Skip to main content
Log in

Polyimides Exhibiting a Negative Electrorheological Response

  • New Materials. Technology of Composite Materials
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The results of rheological studies of the suspensions of polyimide particles in a polydimethylsiloxane fluid are presented. The viscosity of the suspensions decreases in an applied electric field by 10–20%. This property is called a negative electrorheological responce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. E. Filisko, “Current developments in electrorheological materials,” in Smart Materials Ed. by Mel Schwartz (CRC Press, 2008), Part 21, pp. 1–6.

    Google Scholar 

  2. W. M. Winslow, “Induced vibration of suspensions,” J. Appl. Phys. 20, 1137–1140 (1949).

    Article  Google Scholar 

  3. H. J. Choi, T. W. Kim, M. S. Cho, et al., “Electrorheologicl characterization of polyaniline dispersions,” Eur. Polym. J. 33, 699–703 (1997).

    Article  Google Scholar 

  4. A. Lengalova, V. Pavlinek, P. Saha, et al., “The effect of dielectric properties on the electrorheology of suspensions of silica particles coated polyaniline,” Physica A 321, 411–424 (2003).

    Article  Google Scholar 

  5. Kai Di, Yihua Zhu, Xiaoling Yang, and Chunzhong Li, “Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions,” J. Colloids Interface Sci. 294, 499–503 (2006).

    Article  Google Scholar 

  6. H. Block, J. P. Kelly, A. Qin, and T. Watson, “Materials and mechanisms in electrorheology,” Langmuir 6, 6–14 (1990).

    Article  Google Scholar 

  7. T. Hao, “Electrorheological fluids,” Adv. Mater. 13, 1847–1852 (2001).

    Article  Google Scholar 

  8. S. R. Kumbhar, S. Maji, and B. Kumar, “Research on smart materials for automotive applications,” J. Autom. Eng. App. 1 (1), 6–14 (2014).

    Google Scholar 

  9. A. N. Danilin, Yu. G. Yanovsky, N. A. Semenov, and A. D. Shalashilin, “Kinematic model of the rheological behavior of non-Newtonian fluids in conditions of nonstationary cyclic loading,” Composites 3 (3), 331–345 (2012).

    Google Scholar 

  10. W. A. Bullough, A. R. Johnson, A. Hosseini-Sianaki, and J. Makin, “The electrorheological clutch: design, performance characteristics and operation,” J. Syst. Contr. Eng. 207 (2), 87–95 (1993).

    Google Scholar 

  11. K. Krivenkov, S. Ulrich, and R. Bruns, “Extending the operation range of electrorheological actuators for vibration control through novel designs,” J. Intel. Mater. Syst. Struct. 23 (12), 1323–1330 (2012).

    Article  Google Scholar 

  12. S. M. Chen and W. A. Bullough, “CDF study of the flow in a radial electrorheological fluid clutch,” J. Intel. Mater. Syst. Struct. 21, 1569–1574 (2010).

    Article  Google Scholar 

  13. S.-B. Choi, Ji-Y. Yook, M.-K. Choi, Q. H. Nguyen, Y.-S. Lee, and M.-S. Han, “Speed control of dc motor using electrorheological brake system,” J. Intel. Mater. Syst. Struct. 18, 1191–1196 (2007).

    Article  Google Scholar 

  14. W. Wen, X. Huang, S. Yang, K. Lu, and P. Sheng, “The giant electrorheological effect in suspensions of nanoparticles,” Nature Mater. 2 (11), 727–730 (2003).

    Article  Google Scholar 

  15. Y. G. Ko, H. J. Lee, S. S. Shin, and U. S. Choi, “Dipolar-molecule complexed chitosan carboxylate, phosphate, and sulphate dispersed electrorheological suspensions,” Soft Matter 8, 6273–6279 (2012).

    Article  Google Scholar 

  16. Y. G. Ko, H. J. Lee, Y. J. Chun, U. S. Choi, and K. P. Yoo, “Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field,” ACS Appl. Mater. Interfaces 5, 1122–1230 (2013).

    Article  Google Scholar 

  17. Y. Komoda, T. N. Rao, D. A. Tryk, and A. Fujishima, “Influence of the rotation rate of a rotary viscosimeter on the photoelectrorheological properties of TiO2 particle suspensions,” J. Electroanal. Chem. 459, 155–165 (1998).

    Article  Google Scholar 

  18. Y. Komoda, N. Sakai, T. N. Rao, D. A. Tryk, and A. Fujishima, “Photoelectrorheological phenomena involving TiO2 particle suspensions,” Langmuir 14, 1081–1091 (1998).

    Article  Google Scholar 

  19. Y. Komoda, T. N. Rao, D. A. Tryk, and A. Fujishima, “Photoelectrorheology of TiO2 particle suspensions,” Langmuir 13, 1371–1373 (1997).

    Article  Google Scholar 

  20. M. Parthasarathy and D. J. Klingenberg, “Electrorheology: mechanism and models,” Mater. Sci. Eng. R 17, 57–103 (1996).

    Article  Google Scholar 

  21. J. E. Stangroom, “Electrorheological fluids,” Phys. Technol. 14, 290–296 (1983).

    Article  Google Scholar 

  22. M. M. Ramos-Tejada, F. J. Arroyo, and A. V. Delgado, “Negative electrorheological behavior in suspensions of inorganic particles,” Langmuir 26, 16833–16840 (2010).

    Article  Google Scholar 

  23. B. Qian, G. H. McKinley, and A. E. Hosoi, “Structure evolution in electrorheological fluids flowing through microchannels,” Soft Matter 9, 2889–2898 (2013).

    Article  Google Scholar 

  24. G. Quincke, “Ueber rotationen im constantan electrischen felde,” Ann. Phys. 295, 417–486 (1896).

    Article  Google Scholar 

  25. H.-F. Huang, M. Zahn, and E. Lemaire, “Continuum modeling of microparticle electrorotation in Couette and Poiseuille flows. The zero spin viscosity limit,” J. Electrost. 68, 345–359 (2010).

    Article  Google Scholar 

  26. E. Lemaire, L. Lobry, N. Pannacci, and F. Peters, “Viscosity of an electrorheological suspension with internal rotations,” J. Rheol. 52, 769–783 (2008).

    Article  Google Scholar 

  27. O. O. van der Biest and L. J. Vandeperre, “Electrophoretic depositions of materials,” Annu. Rev. Mater. Sci. 29, 327–352 (1999).

    Article  Google Scholar 

  28. N. Pannacci, E. Lemaire, and L. Lobry, “Rheological and structure of a suspension of particles subjected to Quincke rotation,” Rheol. Acta 46, 899–904 (2007).

    Article  Google Scholar 

  29. P. Feng, Q. Wan, X. Q. Fu, and T. H. Wang, “Anomalous electrorheological behavior of ZnO nanowires,” Appl. Lett. 87, 033114 (2005).

    Article  Google Scholar 

  30. H. I. Unal, B. Cetin, and O. Erol, “Electrorheological response of polyindene/colemanite conducting composite,” J. Phys. Conf. Ser. 412, 012005 (2013).

    Article  Google Scholar 

  31. B. Cetin, H. I. Unal, and O. Erol, “The negative and positive electrorheological behavior and vibration dampling characteristics of colemanite and polyindene/colemanite conducting composite,” Smart Meter. Struct. 21, 125011 (2012).

    Article  Google Scholar 

  32. Thermo Haake Rheostress User Manual.

  33. Yu. G. Yanovsky, N. A. Semenov, S. M. Nikitin, G. Ya. Sidorova, and M. A. Guseva, “Smart materials with electrically controlled properties. Electrorheological suspensions with a nanosized polymeric disperse phase. Part. 2. Synthesis and mechanical properties,” Nanomech. Sci. Techn. 3 (3), 212–242 (2012).

    Google Scholar 

  34. A. A. Kuznetsov, A. Yu. Tsegelskaya, M. Yu. Belov, V. I. Berendyaev, S. V. Lavrov, G. K. Semenova, A. L. Izyumulkov, N. V. Kozlova, and B. V. Kotov, “Acid-catalyzed reactions in polyimide synthesis,” in Issue Macromolecular Symposia 128 (1), 203–219 (1998).

    Article  Google Scholar 

  35. A. A. Kuznetsov, “One-pot polyimide synthesis in carboxylic acid medium,” High Performance Polymers 12 (3), 445–460 (2000).

    Article  Google Scholar 

  36. Tensor 37 FTIR Operating Instructions (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Semenov.

Additional information

Original Russian Text © N.A. Semenov, E.S. Kelbysheva, A.N. Vlasov, L.N. Rabinskii, 2016, published in Tekhnologiya Metallov, 2016, No. 10, pp. 18–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, N.A., Kelbysheva, E.S., Vlasov, A.N. et al. Polyimides Exhibiting a Negative Electrorheological Response. Russ. Metall. 2017, 1103–1108 (2017). https://doi.org/10.1134/S0036029517130225

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517130225

Keywords

Navigation