Skip to main content
Log in

Fracture mechanism of coronal teenage dentin

  • Applied Problems of Strength and Plasticity
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure of coronal teenage dentin and the development of cracks in it are studied on microand nanolevels. The material is found to fail according to a ductile mechanism on a microlelvel and according to a ductile–brittle mechanism on a nanoscale. This behavior is similar to the failure of a polyethylene film and rubber, when significant elastic and irreversible deformation precedes crack growth. The viscoelastic behavior can be considered as the reaction of dentin to an applied mechanical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. McClintock and A. Argon, Mechanical Behavior of Materials (Addison-Wesley, Reading, Mass., 1966).

    Google Scholar 

  2. R. Honeycombe, The Plastic Deformation of Metals (Cambridge University Press., Cambridge, 1968).

    Google Scholar 

  3. A. S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University Press, Cambridge, 2013).

    Book  Google Scholar 

  4. G. W. Marshall, “Dentin: microstructure and characterization,” Quintessence Int. 24 (9), 606–617 (1993).

    Google Scholar 

  5. R. K. Nalla, J. H. Kinney, and R. O. Ritchie, “Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanism,” Biomaterials 24, 3955–3968 (2003).

    Article  Google Scholar 

  6. J. H. Kinney, M. Balooch, G. W. Marshall, and S. J. Marshall, “A micromechanics model of the elastic properties of human dentin,” Arch. Oral Biology 44, 813–822 (1999).

    Article  Google Scholar 

  7. D. V. Zaitsev, S. S. Grigor’ev, O. V. Antonova, and P. E. Panfilov, “Deformation and failure of human dentin,” Deform. Razr. Mater., No. 6, 37–43 (2011).

    Google Scholar 

  8. J. J. Kruzic, R. K. Nalla, J. H. Kinney, and R. O. Ritchie, “Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration,” Biomaterials 24, 5209–5221 (2003).

    Article  Google Scholar 

  9. D. Zaytsev, S. Grigoriev, and P. Panfilov, “Deformation behavior of root dentin under Sjögren’s syndrome,” Mater. Lett. 65, 2435–2438 (2011).

    Article  Google Scholar 

  10. I. M. Robertson and H. K. Burnbaum, “An HVEM study of hydrogen effects on the deformation and fracture of nickel,” Acta Metall. 32 (3), 353–366 (1986).

    Article  Google Scholar 

  11. S. M. Ohr, “An electron-microscopy study of crack tip deformation and its impact on the dislocation theory fracture,” Mater. Sci. Eng. 72 (1), 1–35 (1985).

    Article  Google Scholar 

  12. P. Panfilov, V. Novgorodov, and G. Baturin, “An evolution of microcracks in thin foil of face-centred cubic metal,” J. Mater. Sci. Lett. 11, 229–232 (1992).

    Article  Google Scholar 

  13. V. E. Arana-Chavez and L. F. Massa, “Odontoblasts: the cells forming and maintaining dentine,” Int. J. Biochemistry & Cell Biology 36, 1367–1373 (2004).

    Article  Google Scholar 

  14. A. L. Volynskii and N. F. Bakeev, Solvent Crazing of Polymers (Elservier, Amsterdam, 1995).

    Google Scholar 

  15. A. L. Volynskii, L. M. Yarysheva, and N. F. Bakeev, “Crazing of polymers in liquid media—a universal, continuous method of adding modifiers to polymer fibers,” Fibr. Chem. 28 (2), 138–141 (2006).

    Article  Google Scholar 

  16. J. F. Nott, Fundamentals of Fracture Mechanics (Metallurgiya, Moscow, 1987).

    Google Scholar 

  17. P. Panfilov, D. Zaytsev, O. V. Antonova, V. Alpatova, and L. P. Kiselnikova, “The difference of structural state and deformation behavior between teenage and mature human dentin,” Int. J. Biomater. 2016 (2016). doi 10.1155/2016/6073051v

  18. D. Zaytsev and P. Panfilov, “Influences of the sample shape and compression temperature on the deformation behavior and mechanical properties of human dentin,” Mater. Sci. Eng. C 43, 607–613 (2014).

    Article  Google Scholar 

  19. D. Zaytsev, A. S. Ivashov, J. V. Mandra, and P. Panfilov, “On the deformation behavior of human dentin under compression and bending,” Mater. Sci. Eng. C 41, 83–90 (2014).

    Article  Google Scholar 

  20. D. Zaytsev and P. Panfilov, “Deformation behavior of human dentin in liquid nitrogen: a diametral compression test,” Mater. Sci. Eng. C 42, 48–51 (2014).

    Article  Google Scholar 

  21. P. Panfilov, A. Yermakov, and G. Baturin, “The cause of cleavage in iridium single crystals,” J. Mater. Sci. Lett. 9, 1162–1164 (1990).

    Article  Google Scholar 

  22. D. Zaytsev, S. Grigor’ev, and P. Panfilov, “Human dentin as an object of inquiry of physical metallurgy,” Probl. Stomatolog. 3, 3–14 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Panfilov.

Additional information

Original Russian Text © P.E. Panfilov, A.V. Kabanova, I.N. Borodin, J. Guo, Z. Zang, 2017, published in Deformatsiya i Razrushenie Materialov, 2017, No. 1, pp. 35–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panfilov, P.E., Kabanova, A.V., Borodin, I.N. et al. Fracture mechanism of coronal teenage dentin. Russ. Metall. 2017, 879–883 (2017). https://doi.org/10.1134/S0036029517100172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517100172

Keywords

Navigation