Skip to main content
Log in

Deformation behavior of submicrocrystalline aluminum alloys during dynamic loading

  • Promising Materials and Technologies
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure and the mechanical properties of aluminum V95 and AMts alloys with various grain sizes (from micron to submicron) are studied in a wide range of strain rates (from 10–3 to 105 s–1). Submicrocrystalline (200–600 nm) materials are formed by dynamic channel-angular pressing at a strain rate of 105 s–1 using a pulsed power source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Rybin, Severe Plastic Deformation and Fracture of Metals (Metallurgiya, Moscow, 1986).

    Google Scholar 

  2. V. N. Perevezentsev and G. F. Sarafanov, Metal Fragmentation under Plastic Deformation (Lobachevskii State University, Nizhni Novgorod, 2007).

    Google Scholar 

  3. A. M. Gleser and V. E. Gromov, Nanomaterials Created under Extreme Conditions (Inter-Kuzbas, Novokuznetsk, 2010).

    Google Scholar 

  4. V. M. Segal, “Development of material treatment by severe shear deformation,” Russian Metallurgy (Metally), 2004 (1), 2–9 (2004).

    Google Scholar 

  5. R. Z. Valiev and I. V. Aleksandrov, Volume Nanostructured Materials: Synthesis, Structure, and Properties (Akademkniga, Moscow, 2007).

    Google Scholar 

  6. A. Aronin, G. Abrosimova, D. Matveev, and O. Rybchenko, “Structure and properties of nanocrystalline alloys prepared by high pressure torsion,” Rev. Adv. Mater. Sci. 25, 52–57 (2010).

    Google Scholar 

  7. E. V. Shorokhov, I. N. Zhgilev, and R. Z. Valiev, “Method of dynamic treatment of materials,” RF Patent 2283717, Byull. Izobret., No. 26 (2006).

  8. I. V. Khomshaya, E. V. Shorokhov, V. I. Zel’dovich, A.E. Kheifets, N. Yu. Frolova, P. A. Nasonov, A. A. Ushakov, and I. N. Zhgilev, “Study of the structure and mechanical properties of submicrocrystalline and nanocrystalline copper produced by high-rate pressing,” Phys. Met. Metallogr. 111 (6) 612–622 (2011).

    Article  Google Scholar 

  9. V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, S.V.Dobatkin, I. N. Zhgilev, A. E. Kheifets, and I. V. Khomskaya “High-rate deformation of titanium subjected to dynamic channel-angular pressing,” Phys. Met. Metallogr. 105 (4) 411–417 (2011).

    Google Scholar 

  10. V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Structure of chromium-zirconium bronze subjected to dynamic channel-angular pressing and aging,” Phys. Met. Metallogr. 114 (5) 411–418 (2013).

    Article  Google Scholar 

  11. I. G. Brodova, A. N. Petrova, I. G. Shirinkina, E.V. Shorokhov, I. V. Minaev, I. N. Zhgilev, and A. V. Abramov, “Fragmentation of the structure in Al-based alloys upon high speed effect,” Rev. Adv. Mater. Sci., No. 25, 128–135 (2010).

    Google Scholar 

  12. I. G. Brodova, A. N. Petrova, and I. G. Shirinkina, “Comparing specific features of the structural formation of aluminum alloys during severe and intense plastic deformation,” Bull. Russ. Acad. Sci.: Phys. 76 (11) 1233–1237 (2012).

    Article  Google Scholar 

  13. A. N. Petrova, I. G. Brodova, O. A. Plekhov, O. B. Naimark, and E. V. Shorokhov, “Mechanical properties and energy dissipation in ultrafine-grained AMts and V95 aluminum alloys during dynamic compression,” Tech. Phys. 59, 989–996 (2014).

    Article  Google Scholar 

  14. G. V. Garkushin, S. V. Razorenov, and G. I. Kanel’, “Effect of structural factors on submicrosecond strength of D16T aluminum alloy,” Tech. Phys. 53, 1441–1446 (2008).

    Article  Google Scholar 

  15. S. V. Razorenov, G. I. Kanel’, and G. N. Garkushin, “Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures,” Phys. Solid State 54, 790–797 (2012).

    Article  Google Scholar 

  16. O. Plekhov, V. Chudinov, V. Leont’ev, and O. Naimark, “Experimental investigations of the laws of energy dissipation during dynamic deformation of nanocrystalline titanium,” Tech. Phys. Lett. 35, 92–100 (2009).

    Article  Google Scholar 

  17. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).

    Google Scholar 

  18. I. G. Brodova, A. N. Petrova, S. V. Razorenov, and E. V. Shorokhov, “Resistance of submicrocrystalline aluminum alloys to high-rate deformation and fracture after dynamic channel angular pressing,” Phys. Met. Metallogr. 116 (5), 519–526 (2015).

    Article  Google Scholar 

  19. V. E. Fortov, Extreme States of Matter (Fizmat, Moscow, 2009).

    Google Scholar 

  20. M. L. Meyers and L. E. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals (Metallurgiya, Moscow, 1984).

    Google Scholar 

  21. Y. M. Wang and E. Ma, “Three strategies to achieve uniform tensile deformation in nanostructured metal,” Acta Mater. 52, 1699–1709 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Brodova.

Additional information

Original Russian Text © I.G. Brodova, A.N. Petrova, S.V. Razorenov, O.P. Plekhov, E.V. Shorokhov, 2015, published in Deformatsiya i Razrushenie Materialov, 2015, No. 11, pp. 27–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodova, I.G., Petrova, A.N., Razorenov, S.V. et al. Deformation behavior of submicrocrystalline aluminum alloys during dynamic loading. Russ. Metall. 2016, 342–348 (2016). https://doi.org/10.1134/S0036029516040066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516040066

Navigation