Skip to main content
Log in

Shear modulus and internal friction in a Cu-0.17% Zr alloy and pure copper subjected to equal-channel angular pressing

  • Physical Foundations of Strength and Plasticity
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The effect of temperature on the shear modulus and low-frequency internal friction of pure copper and a Cu-0.17 wt % Zr alloy subjected to equal channel angular pressing (ECAP) is studied in the temperature range 100–550 K. In both materials, ECAP significantly decreases the shear modulus. It is found that the temperature dependences of the shear modulus of the alloy and pure copper are qualitatively similar and those of the internal friction are markedly different. Possible mechanisms responsible for the anomalous behavior of the elastic moduli and internal friction in the materials subjected to ECAP are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, M. J. Zehetbauer, Y. Estrin, et al., “The innovation Potential of Bulk Nanostructured Materials,” Advanced Eng. Mater. 9, 527–532 (2007).

    Article  Google Scholar 

  2. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk Nanostructured Materials from Severe Plastic Deformation,” Progress in Material Science 45, 103–189 (2000).

    Article  CAS  Google Scholar 

  3. H. A. Akhmadeev, R. Z. Valiev, N. P. Kobelev, et al., “Elastic Properties of Copper with Submicrocrystalline Structure,” Fiz. Tverd. Tela (St. Petersburg) 34, 3155–3160 (1992).

    CAS  Google Scholar 

  4. N. A. Akhmadeev, N. P. Kobelev, R. R. Milyukov, et al., “The effect of Heat treatment on the Elastic and Dissipative Properties of Copper with the Submicrocrystalline Structure,” Acta Met. Et Mat. 41, 1041–1046 (1993).

    Article  CAS  Google Scholar 

  5. A. B. Lebedev, Y. A. Burenkov, A. E. Romanov, et al., “Softening of the Elastic modulus in Submicrocrystalline Copper,” Mater. Sci. Eng. A 203, 165–170 (1995).

    Article  Google Scholar 

  6. N. P. Kobelev, E. L. Kolyvanov, and Y. Estrin, “Temperature Dependence of Sound Attenuation and Shear Modulus of Ultrafine-grained Copper Produced By Equal Channel Angular Pressing,” Acta Mater. 56, 1473–1481 (2008).

    Article  CAS  Google Scholar 

  7. A. B. Lebedev, S. A. Pulnev, V. L. Kopylov, et al., “Thermal Mobility of Submicrocrystalline Copper and Cu:ZrO2 Composite,” Scripta Materialia 35, 1077–1081 (1996).

    Article  CAS  Google Scholar 

  8. A. Vinogradov, V. Patlan, Y. Suzuki, et al., “Structure and Properties of Ultrafine-grained Cu-Cr-Zr Alloys Produced by Equal-Channel Angular Pressing,” Acta Materiala 50, 1639–1651 (2002).

    Article  CAS  Google Scholar 

  9. K. Neishi, Z. Horita, and T. G. Langdon, “Achieving Superplasticity in Ultrafine-grained Copper: Influence of Zn and Zr Additions,” Mater. Sci. Eng. A 352, 129–135 (2003).

    Article  Google Scholar 

  10. Y. Amouyal, S. V. Divinski, Y. Estrin, and E. Rabkin, “Short-Circuit Diffusion in an Ultrafine-grained Copper-Zirconium Alloy Produced by Equal-Channel Angular Pressing,” Acta Materiala 55, 5968–5979 (2007).

    Article  CAS  Google Scholar 

  11. Y. Estrin, R. J. Hellmig, M. Janecek, et al., “Mechanical and Corrosion Properties of ECAP Processed Copper,” in Proceedings of International Conference Copper′06, France (Wiley, Weinheim, 2006), pp. 27–33.

    Google Scholar 

  12. A. Nowick and B. Berry, Inelastic Relaxation in Crystalline Solids (Academic, New York, 1972; Atomizdat, Moscow, 1975).

    Google Scholar 

  13. N. P. Kobelev, E. L. Kolyvanov, and V. A. Khonik, “Irreversible Structural Relaxation in a Bulk Pd-Cu-Ni-P Metallic Glass,” Phys. Solid States 48(3), 389–395 (2006).

    Google Scholar 

  14. V. A. Khonik and N. P. Kobelev, “Relation between the Shear Viscosity and Heating Rate in Metallic Glasses below the Glass Transition,” Physical Review B 77, 132203–3 (2008).

    Article  Google Scholar 

  15. R. Kužel, V. Cherkaska, Z. Matěj, M. Janeček, J. Čižek, and M. Dopita, “Structural Studies of Submicrocrystalline Copper and Copper Composites by Different Methods,” Zeitschrift für Kristallographie Supplements 27, 73–80 (2008).

    Google Scholar 

  16. T. Ungar and G. Tichi, “The Effect of Dislocation Contrast on X-ray Line Profile in Untextured Polycrystals,” Physica Status Solidi (a) 171, 425–434 (1999).

    Article  CAS  Google Scholar 

  17. J. Gobicza, N. H. Nam, R. J. Hellmig, et al., “Microstructure of Severely Deformed Metals Determined by X-ray Peak Profile Analysis,” J. Alloys Comp. 378, 248–252 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Kolyvanov.

Additional information

Original Russian Text © E.L. Kolyvanov, N.P. Kobelev, Yu. Estrin, 2010, published in Deformatsiya i Razrushenie Materialov, 2010, No. 4, pp. 1–6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolyvanov, E.L., Kobelev, N.P. & Estrin, Y. Shear modulus and internal friction in a Cu-0.17% Zr alloy and pure copper subjected to equal-channel angular pressing. Russ. Metall. 2011, 279–284 (2011). https://doi.org/10.1134/S0036029511040082

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029511040082

Keywords

Navigation