Skip to main content
Log in

Estimation of the crystallographic strain limit during the reversible β ⇄ α″ martensitic transformation in titanium shape memory alloys

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Three methods are described to calculate the crystallographic strain limit that is determined by the maximum deformation of the crystal lattice in the reversible βbcc ⇄ α″orth martensitic transformation and ensures pseudoelastic deformation accumulation and shape recovery in Ti-Nb-Ta alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Park and R. S. Lakes, Biomaterials—An Introduction, 2nd ed. (Plenum, New York, 1992).

    Google Scholar 

  2. M. Long and H. J. Rack, “Titanium Alloys in Total Joint Replacement—A Materials Science Perspective,” Biomaterials 19, 1621–1639 (1998).

    Article  CAS  Google Scholar 

  3. V. E. Gyunter, V. I. Itin, L. A. Monasevich, Yu. I. Paskal’, et al., Shape Memory Effects and Their Application in Medicine (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  4. S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and Characterization of Ni-free Ti-base Shape Memory and Superelastic Alloys,” Mater. Sci. Eng. A 438–440, 18–24 (2006).

    Google Scholar 

  5. M. Niinomi, T. Hanawa, and T. Narushima, “Japanese Research and Development on Metallic Biomedical, Dental, and Healthcare Materials,” J. Metals 57(4), 18–24 (2005).

    CAS  Google Scholar 

  6. G. I. Nosova, Phase Transformations in Titanium Alloys (Metallurgiya, Moscow, 1968) [in Russian].

    Google Scholar 

  7. A. V. Dobromyslov and N. I. Taluts, “Formation and Crystallographic Features of the α″-phase in Zr-Mo Alloys,” in Proceedings of XVI Conference on Applied Crystallography (World Sci., 1996), pp. 251–256.

  8. A. A. Il’in, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  9. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys (MISiS, Moscow, 1999) [in Russian].

    Google Scholar 

  10. Yu. A. Bagaryatskii, G. I. Nosova, and T. V. Tagunova, “Metastable α″ Phase in Titanium Alloys with Transition Elements,” Transactions of TsNIIChM, No. 4, 61–63 (1960).

  11. J. P. Morniroli and M. Gantois, “Etude des Conditions de Formation de la Phase Omega Dans les Alliage Titane-Niobium et Titane-Molybdéne,” Met. Sci. Rev. Metallurg. 70(11), 831–842 (1973).

    CAS  Google Scholar 

  12. V. N. Gridnev, O. M. Ivasishin, and S. P. Oshkaderov, Physical Foundations of Rapid Thermal Hardening of Titanium Alloys (Naukova Dumka, Kiev, 1986) [in Russian].

    Google Scholar 

  13. M. I. Petrzhik and N. F. Zhebyneva, “Thermally Stimulated Reversible and Irreversible Martensitic Transformations in Ti-Ta-Nb Alloys,” in Proceedings of All-Russia Conference on Martensitic Transformations in Solids MARTENSIT’91, Kosov, Ukraine (Kiev, 1992), pp. 378–381.

  14. M. I. Petrzhik, S. G. Fedotov, and Yu. K. Kovneristyi, “Effect of Thermal Cycling on the Structure of Quenched Ti-Ta-Nb Alloys,” Metalloved. Term. Obrab. Met., No. 3, 25–27 (1992).

  15. Novel Materials, Ed. by Yu. S. Karabasov (MISiS, Moscow, 2002) [in Russian].

    Google Scholar 

  16. K. Ootsuka, K. Simidzu, Yu. Sudzuki, et al., Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  17. M. I. Petrzhik and S. G. Fedotov, “Reversible and Martensitic Transformations in Titanium Solid Solutions as a Result of Growing Distortion and Restructuring of a Crystal Lattice under External Actions,” in Proceedings of All-Russia Conference on Martensitic Transformations in Solids MARTENSIT’91, Kosov, Ukraine (Kiev, 1992), pp. 374–377.

  18. M. I. Petrzhik and S. G. Fedotov, “Thermal Stability and Dynamics of Martensitic Structure in Ti-(Ta,Nb) Alloys,” in Proceedings of XVI Conferebce on Applied Crystallography (World Sci., 1995), pp. 273–276.

  19. H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, and S. Miyazaki, “Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys,” Acta Mater. 54, 2419–2429 (2006).

    Article  CAS  Google Scholar 

  20. H. Y. Kim, T. Sasaki, K. Okutsu, J. I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, “Texture and Shape Memory Behavior of Ti-22Nb-6Ta Alloy,” Acta Mater. 54, 423–433 (2006).

    Article  CAS  Google Scholar 

  21. S. Miyazaki, V. H. No, K. Kitamura, A. Khantachawana, and H. Hosoda, “Texture of Ti-Ni Rolled Thin Plates and Sputter-Deposited Thin Films,” Inter. J. Plast. 16, 1135–1154 (2000).

    Article  CAS  Google Scholar 

  22. H. K. D. H. Bhadeshia, Worked Examples in the Geometry of Crystals (Institute Mater., London, 2001).

    Google Scholar 

  23. A. Kelly and G. W. Groves, Crystallography and Crystal Defects (Longman, London, 1970; Mir, Moscow, 1974).

    Google Scholar 

  24. Yu. I. Paskal’ and L. A. Monasevich, “Martensitic Deformation of Titanium Nickelide,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 103–117 (1982).

  25. S. D. Borisova, L. A. Monasevich, and Yu. I. Paskal’, “Crystallographic Calculation of the Reversible Deformation in the Shape Memory Effects of Titanium Nickelide,” Metallofizika 5(2), 66–70 (1983).

    CAS  Google Scholar 

  26. Yu. S. Zolotukhin and V. P. Sivokha, “Martensitic Transformations and Inelastic Behavior of some B2 Titanium-Based Alloys,” Fiz. Met. Metalloved. 66(5), 896–902 (1988).

    CAS  Google Scholar 

  27. V. N. Khachin, V. G. Pushin, V. P. Sivokha, Yu. S. Zolotukhin, et al., “Structure and Properties of B2 Titanium Compounds,” Fiz. Met. Metalloved. 67(4), 756–767 (1989).

    CAS  Google Scholar 

  28. L. L. Meisner and V. P. Sivokha, “Deformation of the Crystal Lattice during the B2 → B19′ Martensitic Transformation in Ni50Ti50 − x Zrx Alloys,” Fiz. Met. Metalloved. 81(5), 158–164 (1996).

    CAS  Google Scholar 

  29. L. I. Sedov, Mechanics of Continua (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  30. Yu. I. Sirotin and M. P. Shaskol’skaya, Foundations of Crystal Physics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  31. S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, et al., “On the Lattice Parameters of Phases in Binary Ti-Ni Shape Memory Alloys,” Acta Mater. 52, 4479–4492 (2004).

    Article  CAS  Google Scholar 

  32. I. P. Kudryavtsev, Textures in Metals and Alloys (Metallurgiya, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Zhukova.

Additional information

Original Russian Text © Yu.S. Zhukova, M.I. Petrzhik, S.D. Prokoshkin, 2010, published in Metally, 2010, No. 6, pp. 77–84.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukova, Y.S., Petrzhik, M.I. & Prokoshkin, S.D. Estimation of the crystallographic strain limit during the reversible β ⇄ α″ martensitic transformation in titanium shape memory alloys. Russ. Metall. 2010, 1056–1062 (2010). https://doi.org/10.1134/S003602951011011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602951011011X

Keywords

Navigation