Skip to main content
Log in

CALPHAD Modelling of Ag–Pd–Sn Ternary System

  • CHEMOINFORMATICS AND COMPUTER MODELING
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

CALPHAD modelling of the Ag–Pd–Sn ternary system has been performed. The disordered phases, the melt and the fcc phase were described using the substitutional solution model. Sublattice models were used to describe intermetallic compounds and the ternary phase. The two-sublattice model (Ag,Pd)4(Ag, Sn) used for the ternary phase made it possible to reproduce the inclination of its homogeneity range. The results of the thermodynamic calculation of the Ag–Pd–Sn system are in good agreement with the experimental data on phase equilibria and enthalpies of formation of the liquid. The agreement with the data on the partial Gibbs energy of tin in the liquid is somewhat worse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H.-J. Shin, Y. H. Kwon, and H.-J. Seol, J. Mech. Behav. Biomed. Mater. 107, 103728 (2020). https://doi.org/10.1016/j.jmbbm.2020.103728

  2. R. Zhang, M. Peng, L. Ling, et al., Chem. Eng. Sci. 199, 64 (2019). https://doi.org/10.1016/j.ces.2019.01.018

    Article  CAS  Google Scholar 

  3. R. Zerdoumi and M. Armbrüster, ACS Appl. Energy Mater. 4, 11279 (2021). https://doi.org/10.1021/acsaem.1c02119

    Article  CAS  Google Scholar 

  4. C. Y. Lee, S. P. Yang, C. H. Yang, et al., Surf. Coat. Technol. 395, 125879 (2020). https://doi.org/10.1016/j.surfcoat.2020.125879

  5. B. Sundman, H. L. Lukas, and S. G. Fries, Computational Thermodynamics: The Calphad Method (Cambridge Univ. Press, New York, 2007), p. 313.

    Google Scholar 

  6. A. S. Pavlenko, E. A. Ptashkina, E. G. Kabanova, et al., CALPHAD 81, 102533 (2023). https://doi.org/10.1016/j.calphad.2023.102533

  7. G. H. Laurie and J. N. Pratt, J. Chem. Soc., Faraday Trans. 60, 1391 (1964). https://doi.org/10.1039/TF9646001391

    Article  CAS  Google Scholar 

  8. C. Luef, A. Paul, H. Flandorfer, et al., J. Alloys Compd. 391, 67 (2005). https://doi.org/10.1016/j.jallcom.2004.08.056

    Article  CAS  Google Scholar 

  9. A. S. Pavlenko, E. G. Kabanova, and V. N. Kuznetsov, Russ. J. Phys. Chem. A 94, 2691 (2020). https://doi.org/10.1134/s0036024420130178

    Article  CAS  Google Scholar 

  10. Thermo-Calc Software PURE5/SGTE Pure Element Database. https://thermocalc.com/about-us/methodology/the-calphad-methodology/assessment-of-thermodynamic-data/

  11. G. Ghosh, C. Kantner, and G. B. Olson, J. Phase Equilib. 20, 295 (1999). https://doi.org/10.1361/105497199770335811

    Article  CAS  Google Scholar 

  12. W. Gierlotka, Y. C. Huang, and S. W. Chen, Metall. Mater. Trans. A 39, 3199 (2008). https://doi.org/10.1007/s11661-008-9671-6

    Article  CAS  Google Scholar 

  13. G. Vassilev, V. Gova, N. Milcheva, et al., Calphad 43, 133 (2013). https://doi.org/10.1016/j.calphad.2013.03.003

    Article  CAS  Google Scholar 

  14. S. Cui, J. Wang, Z. You, et al., Intermetallics 126, 106945 (2020). https://doi.org/10.1016/j.intermet.2020.106945

  15. O. Redlish and A. T. Kister, Ind. Eng. Chem. 40, 345 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  16. G. W. Toop, Trans. Metall. Soc. AIME 233, 850 (1965).

    CAS  Google Scholar 

  17. J.-O. Andersson, T. Heler, L. Höglund, et al., Calphad 26, 273 (2002). https://doi.org/10.1016/s0364-5916(02)00037-8

    Article  CAS  Google Scholar 

  18. A. S. Pavlenko, E. A. Ptashkina, G. P. Zhmurko, E. G. Kabanova, M. A. Kareva, A. V. Khoroshilov, and V. N. Kuznetsov, Russ. J. Phys. Chem. A 97, 42 (2023). https://doi.org/10.1134/S0036024423010235

    Article  CAS  Google Scholar 

  19. A. S. Pavlenko, E. G. Kabanova, M. A. Kareva, et al., Materials 16, 1690 (2023). https://doi.org/10.3390/ma16041690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. V. N. Kuznetsov and E. G. Kabanova, Calphad 51, 346 (2015). https://doi.org/10.1016/j.calphad.2015.01.011

    Article  Google Scholar 

  21. S. Cui, J. Wang, and I. H. Jung, Metall. Mater. Trans. A 53, 4296 (2022). https://doi.org/10.1007/s11661-022-06825-9

    Article  CAS  Google Scholar 

Download references

Funding

The present research work was financially supported by Russian Science Foundation (RSF) grant no. 22-23-00565 (https://rscf.ru/en/project/22-23-00565/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. G. Kabanova or V. N. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, A.S., Zhmurko, G.P., Kabanova, E.G. et al. CALPHAD Modelling of Ag–Pd–Sn Ternary System. Russ. J. Phys. Chem. 97, 2006–2012 (2023). https://doi.org/10.1134/S0036024423090145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090145

Keywords:

Navigation