Skip to main content
Log in

Porous NiCu Nanoarrays Decorated by Hydr(oxy)oxides As Highly Active Catalyst for Hydrogen Evolution Reaction

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The design of non-precious metals catalyst as electrode for efficient hydrogen evolution reaction (HER) is in crucial demand. A porous NiCu/hydr(oxy)oxides nanoarrays electrode (p-NiCu(OxHy)) was prepared with electrochemical dealloying followed by anodization method. The p-NiCu(OxHy) exhibits excellent HER performance in 0.1 M KOH solution at room temperature, which only require 92 mV to obtain the current density of 10 mA cm–2 and the Tafel slope is 66 mV dec–1. Such catalytic activity is attributed to the porous nanoarrays structure and the decoration of NiCu corresponding hydr(oxy)oxides. Overall, this study provides a superior strategy to fabricate HER catalyst material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. I. Dincer, Renewable Sustainable Energy Rev. 4, 157 (2000).

    Article  Google Scholar 

  2. J. A. Turner, Science (Washington, DC, U. S.) 305, 972 (2004).

    Article  CAS  Google Scholar 

  3. X. L. Lang, S. Gopalan, W. L. Fu, and S. Ramakrishna, Bull. Chem. Soc. Jpn. 94, 8 (2021).

    Article  CAS  Google Scholar 

  4. J. S. Kim, B. Kim, H. Kim, et al., Adv. Energy Mater. 8, 1702774 (2018).

  5. D. Q. Yan, L. Zhang, Z. P. Chen, et al., Acta Phys.-Chim. Sin. 37, 2009054 (2021).

  6. J. P. Hughes, J. Clipsham, H. Chavushoglu, et al., Renewable Sustainable Energy Rev. 139, 110709 (2021).

  7. J. Mohammed-Ibrahim and X. J. Sun, Energy Chem. 34, 111 (2019).

    Article  Google Scholar 

  8. T. Wu, X. Wang, A. E. Emre, et al., J. Energy Chem. 55, 48 (2021).

    Article  CAS  Google Scholar 

  9. Y. Pei, Y. Cheng, J. Chen, et al., J. Mater. Chem. A 6, 23220 (2018).

    Article  CAS  Google Scholar 

  10. P. Chen, T. Zhou, M. Zhang, et al., Adv. Mater. 29, 1701584 (2017).

  11. H. Sun, Z. Ma, Y. Qiu, et al., Small 14, 1800294 (2018).

  12. D. Kim, J. Park, J. Lee, et al., ChemSusChem 11, 3618 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. D. Gao, J. Guo, X. Cui, et al., ACS Appl. Mater. Interface 9, 22420 (2017).

    Article  CAS  Google Scholar 

  14. N. V. Krstajić, B. N. Grgur, M. Zdujić, et al., J. Alloys Compd. 257, 245 (1997).

    Article  Google Scholar 

  15. F. Rosalbino, D. Macciò, A. Saccone, et al., Int. J. Hydrogen Energy 36, 1965 (2011).

    Article  CAS  Google Scholar 

  16. S. H. Ahn, H. Y. Park, I. Choi, et al., Int. J. Hydrogen Energy 38, 13493 (2013).

    Article  CAS  Google Scholar 

  17. M. Y. Gao, C. Yang, Q. B. Zhang, et al., Electrochim. Acta 215, 609 (2016).

    Article  CAS  Google Scholar 

  18. J. Greeley, T. F. Jaramillo, J. Bonde, et al., Nat. Mater. 5, 909 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Q. Sun, Y. Dong, Z. Wang, et al., Small 14, 1704137 (2018).

  20. N. Lotfi, T. Shahrabi, Y. Yaghoubinezhad, and G. H. Barati Darband, J. Electroanal. Chem. 848, 113350 (2019).

  21. X. Y. Liu, J. B. Zang, Y. H. Wang, et al., Int. J. Hydrogen Energy 45, 13985 (2020).

    Article  CAS  Google Scholar 

  22. Q. Lu, G. S. Hutchings, J. Jiao, J. G. Chen, et al., Nat. Commun. 16, 6567 (2015).

    Article  Google Scholar 

  23. R. Subbaraman, D. Tripkovic, N. M. Markovic, et al., Nat. Mater. 11, 550 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. R. Subbaraman, D. Tripkovic, N. M. Markovic, et al., Science (Washington, DC, U. S.) 334, 1256 (2011).

    Article  CAS  Google Scholar 

  25. A. Auer, F. J. Sarabia, C. Griesser, et al., Electrochim. Acta 396, 139222 (2021).

  26. R. Subbaraman, D. Strmcnik, N. M. Markovic, et al., Angew. Chem. Int. Ed. 124, 12663 (2012).

    Article  Google Scholar 

  27. W. D. Zhong, C. F. Yang, X. L. Li, et al., J. Mater. Chem. A 9, 17521 (2021).

    Article  CAS  Google Scholar 

  28. J. Shang, Y. W. Zhan, H. D. Bian, et al., J. Power Sources 257, 374 (2014).

    Article  Google Scholar 

  29. Z. Cao, T. T. Zhou, Y. L. Chen, et al., Adv. Mater. Interfaces 6, 1900381 (2019).

  30. J. Erlebacher, M. J. Aziz, A. Karma, et al., Nature (London, U.K.) 410, 450 (2001).

    Article  CAS  Google Scholar 

  31. M. G. Jeong, K. Zhuo, S. Cherevko, and C. H. Chung, Korean J. Chem. Eng. 29, 1802 (2012).

    Article  CAS  Google Scholar 

  32. Z. Li, H. D. Bian, C. M. Lee, et al., Thin Solid Films 658, 1 (2018).

    Article  CAS  Google Scholar 

  33. K. Kishi and M. J. Sasanuma, J. Electron. Spectrosc. Relat. Phenom. 48, 421 (1989).

    Article  CAS  Google Scholar 

  34. J. Bian, M. Xiao, S. J. Wang, et al., Appl. Surf. Sci. 255, 7188 (2009).

    Article  CAS  Google Scholar 

  35. A. C. Miller, Surf. Sci. Spectra 2, 55 (1993).

    Article  CAS  Google Scholar 

  36. S. Chen, L. Brown, et al., ACS Nano 5, 1321 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. P. Mingyu, Y. Tao, et al., J. Mater. Res. 33, 546 (2018).

    Article  Google Scholar 

  38. F. Parmigiani, G. Pacchioni, et al., J. Electron Spectrosc. 59, 255 (1992).

    Article  CAS  Google Scholar 

  39. H. Santos, P. G. Corradini, M. Andrade, et al., J. Solid State Electron. 24, 1 (2020).

    Article  Google Scholar 

  40. J. Mielczarski and E. Suoninenb, Colloids Surf. 33, 231 (1988).

    Article  CAS  Google Scholar 

  41. Z. Jin, C. Liu, K. Qi, and X. Q. Cui, Sci. Rep. (U.K.) 7, 39695 (2017).

    Article  CAS  Google Scholar 

  42. D. J. Liu, W. G. Zhou, and J. Wu, Fuel 194, 115 (2017).

    Article  CAS  Google Scholar 

  43. D. R. Kumar, D. Manoj, J. Santhanalakshmi, and J. J. Shima, Electrochim. Acta 176, 514 (2015).

    Article  CAS  Google Scholar 

  44. X. S. Zhou, Z. H. Luo, et al., Mater. Chem. Phys. 143, 1462 (2014).

    Article  CAS  Google Scholar 

  45. R. B. Diegle, N. R. Sorensen, et al., J. Electrochem. Soc. 135, 1085 (1988).

    Article  CAS  Google Scholar 

  46. S. Survilienė, A. Češūnienė, V. Jasulaitienė, and I. Jurevičiūtė, Appl. Surf. Sci. 258, 9902 (2012).

    Article  Google Scholar 

  47. Z. Liu, C. Z. Zhang, H. Liu, and L. G. Feng, Appl. Catal. B 276, 119165 (2020).

  48. A. R. González-Elipe, G. Munuera, et al., Surf. Sci. 220, 368 (1989).

    Article  Google Scholar 

  49. S. Oswald and W. Bruckner, Surf. Interface Anal. 36, 17 (2004).

    Article  CAS  Google Scholar 

  50. R. B. Shalvoy, B. H. Davis, and P. J. Reucroft, Surf. Interface Anal. 2, 11 (1980).

    Article  CAS  Google Scholar 

  51. V. Rajagopal Reddy, P. R. Sekhar Reddy, et al., RSC Adv. 6, 105761 (2016).

  52. I. Hotovya, J. Huran, et al., Sens. Actuators, B 78, 126 (2001).

    Article  Google Scholar 

  53. J. Hu, J. Yang, et al., Mater. Res. Bull. 102, 294 (2018).

    Article  CAS  Google Scholar 

  54. E. Turgut et al., Appl. Surf. Sci. 435, 880 (2018).

    Article  CAS  Google Scholar 

  55. X. P. Li et al., Adv. Mater. 32, 2003414 (2020).

  56. H. Y. Zhang, J. G. Du, et al., Int. J. Electrochem. Sci. 14, 6532 (2019).

    Article  CAS  Google Scholar 

  57. B. P. Payne, A. C. Biesinger, and N. S. McIntyre, J. Electron. Spectrosc. 185, 159 (2012).

    Article  CAS  Google Scholar 

  58. P. Prieto, V. Nistor, et al., Appl. Surf. Sci. 258, 8807 (2012).

    Article  CAS  Google Scholar 

  59. J. Wang et al., Sens. Actuators, B 290, 125 (2019).

    Article  CAS  Google Scholar 

  60. P. K. Chauhan and H. S. Gadiyar, Corros. Sci. 25, 55 (1985).

    Article  CAS  Google Scholar 

  61. C. J. Li et al., Appl. Catal., B 244, 56 (2019).

    Article  CAS  Google Scholar 

  62. L. P. Zhong, D. K. Chen, and S. Zafeiratos, Catal. Sci. Technol. 9, 3851 (2019).

    Article  CAS  Google Scholar 

  63. H. W. Nesbitt, I. J. Muir, and A. R. Prarr, Geochim. Cosmochim. Acta 59, 1773 (1995).

    Article  CAS  Google Scholar 

  64. S. Reiche, R. Blume, X. C. Zhao, et al., Carbon 77, 175 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Science and Technology Project of Southwest Petroleum University (2021JBGS03), the Local Science and Technology Development Fund Projects Guided by the Central Government of China (2021ZYD0060), and the Opening Project of Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province (YQKF202011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbo Ge.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, G., Liang, Z., Deng, M. et al. Porous NiCu Nanoarrays Decorated by Hydr(oxy)oxides As Highly Active Catalyst for Hydrogen Evolution Reaction. Russ. J. Phys. Chem. 96, 3119–3125 (2022). https://doi.org/10.1134/S0036024423030123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423030123

Keywords:

Navigation