Skip to main content
Log in

Characterization of Inclusion Interaction between Acylsulfonamide and β-Cyclodextrin: Experimentally and Molecular Modeling Studies

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The inclusion complex of acylsulfonamide (ASL) with β-cyclodextrin (β-CD) was explored experimentally and by molecular modeling studies. The stoichiometric ratio of the complex was found to be 1 : 1 and the stability constant was evaluated using the Benesi–Hildebrand equation. Estimation of the thermodynamic parameters of the inclusion complex in vacuum demonstrates that it is an enthalpy driven process phase and an enthalpy–entropy simultaneous process in aqueous solution, which is consistent with the experimental results. Semi-empirical calculations using PM6 and ONIOM2 methods, in vacuum and in water, were undertaken and done. The energetically more favorable structure obtained with the ONIOM2 method leads to the rise of intermolecular hydrogen bonds between acylsulfonamide and β-cyclodextrin. These interactions were probed using the natural bond orbital (NBO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. J. Szejtli, Chem. Rev. 98, 1743 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. J. Zhang and P. X. Ma, Adv. Drug Deliv. Rev. 65, 1215 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. M. Ceborska, Curr. Org. Chem. 18, 1878 (2012).

    Article  Google Scholar 

  4. C. Hadjer, B. Malika, B. Wahida, et al., Phosphorus, Sulfur, Silicon Relat. Elem. 189, 1396 (2014).

    Article  CAS  Google Scholar 

  5. P. J. B. Raboisson, L. Hu, S. Vendeville, and O. Nyanguile, Chem. Abstr. 151, 124047 (2009).

  6. H. Q. Li, J. Yang, S. Ma, and C. Qiao, Bioorg. Med. Chem. 20, 4194 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. S. Vendeville, T. I. Lin, L. Hu, et al., Bioorg. Med. Chem. Lett. 22, 4437 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. M. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09, Revision A.02 (Ggaussian, 2009).

    Google Scholar 

  9. M. Nagaraju and G. N. Sastry, J. Phys. Chem. A 113, 9533 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. F. Maseras and K. Morokuma, J. Comput. Chem. 16, 1170 (1995).

    Article  CAS  Google Scholar 

  11. M. Svensson, S. Humbel, R. D. J. Froese, et al., J. Phys. Chem. 100, 19357 (1996).

    Article  CAS  Google Scholar 

  12. S. Dapprich, I. Komaáromi, K. S. Byun, et al., J. Mol. Struct.: THEOCHEM 462, 1 (1999).

    Article  Google Scholar 

  13. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  14. J. Chocholoušová, V. Špirko, and P. Hobza, Phys. Chem. Chem. Phys. 6, 37 (2004).

    Article  Google Scholar 

  15. P. Job, Ann. Chim. 9, 113 (1928).

    CAS  Google Scholar 

  16. C. Tablet, I. Matei, and M. Hillebrand, The Determination of the Stoichiometry of Cyclodextrin Inclusion Complexes by Spectral Methods, Possibilities, and Limitations (InTech, Rijeka, 2012).

    Book  Google Scholar 

  17. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc. 71, 2703 (1949).

    Article  CAS  Google Scholar 

  18. M. V. Rekharsky and Y. Inoue, Chem. Rev. 98, 1875 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Y. Inoue, T. Hakushi, Y. Liu, et al., J. Am. Chem. Soc. 115, 475 (1993).

    Article  CAS  Google Scholar 

  20. J. Szejtli and T. Osa, Comprehensive Supramolecular Chemistry (Pergamon, Oxford, 1996), Vol. 3.

    Google Scholar 

  21. M. V. Rekharsky, R. N. Goldberg, F. P. Schwarz, et al., J. Am. Chem. Soc. 117, 8830 (1995).

    Article  CAS  Google Scholar 

  22. A. N. Chermahini, H. A. Dabbagh, and A. Teimouri, J. Mol. Struct. Theor. Chem. 857, 105 (2008).

    Article  CAS  Google Scholar 

  23. K. Lindner and W. Saenger, Angew. Chem. Int. Ed. Engl. 96, 694 (1978).

    Article  Google Scholar 

  24. K. Lindner and W. Saenger, Carbohydr. Res. 99, 103 (1982).

    Article  CAS  Google Scholar 

  25. K. Braesicke, T. Steiner, W. Saenger, and E. W. Knapp, J. Mol. Graph. Model. 18, 143 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. R. G. Winkler, S. Fioravanti, G. Ciccotti, et al., J. Comput. Aided Mol. Des. 14, 659 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. E. B. Starikov, K. Bräsicke, E. W. Knapp, and W. Saenger, Chem. Phys. Lett. 336, 504 (2001).

    Article  CAS  Google Scholar 

  28. L. Lawtrakul, H. Viernstein, and P. Wolschann, Int. J. Pharm. 256, 33 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. K. Dinar, K. Sahra, A. Seridi, and M. Kadri, Chem. Phys. Lett. 595, 113 (2014).

    Article  Google Scholar 

  30. K. Sahra, K. Dinar, A. Seridi, and M. Kadri, Struct. Chem. 26, 61 (2015).

    Article  CAS  Google Scholar 

  31. T. Steiner and G. Koellner, J. Am. Chem. Soc. 116, 5122 (1994).

    Article  CAS  Google Scholar 

  32. V. Zabel, W. Saenger, and S. A. Mason, J. Am. Chem. Soc. 108, 3664 (1986).

    Article  CAS  Google Scholar 

  33. S. Seridi, A. Seridi, M. Berredjem, and M. Kadri, J. Mol. Struct. 1052, 8 (2013).

    Article  CAS  Google Scholar 

  34. P. Politzer and F. Abu-Awwad, Theor. Chem. Acta 99, 83 (1998).

    Article  CAS  Google Scholar 

  35. M. Karelson, V. S. Lobanov, and R. Katrizky, Chem. Rev. 96, 1027 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. G. Venkatesh, T. Sivasankar, M. Karthick, and N. Rajendiran, J. Incl. Phenom. Macrocycl. Chem. 77, 309 (2013).

    Article  CAS  Google Scholar 

  37. L. Qingping, J. Hongbing, and L. Shushen, Comput. J. Theor. Chem. 963, 200 (2011).

    Article  Google Scholar 

  38. A. Ebrahimi, H. Roohi, M. Habibi, et al., Chem. Phys. 22, 289 (2006).

    Article  Google Scholar 

  39. A. Nowroozi and H. Raissi, Theor. Chem. 759, 93 (2006).

    CAS  Google Scholar 

  40. G. Uccello-Barretta, F. Balzano, G. Sicoli, et al., Bioorg. Med. Chem. 12, 447 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Sahra.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahra, K., Kadri, M., Berredjem, M. et al. Characterization of Inclusion Interaction between Acylsulfonamide and β-Cyclodextrin: Experimentally and Molecular Modeling Studies. Russ. J. Phys. Chem. 96, 3149–3160 (2022). https://doi.org/10.1134/S0036024423020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423020097

Keywords:

Navigation