Skip to main content
Log in

Removal of Dye by Adsorption on Nitric Acid Treated Sugar Bagasse Wastes, an Experimentally, Theoretically, and Computational Studies

  • PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, carbonized activated bagasse (CAB) was generated from sugarcane bagasse wastes using a chemical carbonization process to remove crystal-violet (CV) dye, posing a low environmental risk. The CAB obtained is characterised using a Fourier-Transform Infrared spectrophotometer and a scanning electron microscope. The pH, contact time, temperature, adsorbent concentration, and initial concentration of CV dye were all measured. The maximum removal percentage of around 82% was obtained under optimal conditions of pH 10, 3 h, 25°C, 0.01 g adsorbent dose, and 100 ppm initial dye concentration. According to the kinetic tests, the best kinetic model for CV adsorption was pseudo-second-order. To test thermodynamic parameters such as free enthalpy (H), entropy (S), and energy (G), the Langmuir constant (K) was used, supplemented by the Temkin and Freundlich models. The previous study is supported with a computational studies Monte Carlo (MC) simulation and molecular dynamics (MD) simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. T. Robinson, B. Chandran, and P. Nigam, Water Res. 36, 2824 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. K. R. Ramakrishna and T. Viraraghavan, Water Sci. Technol. 36, 189 (1997).

    Article  CAS  Google Scholar 

  3. P. Nigam et al., Bioresour. Technol. 72, 219 (2000).

    Article  CAS  Google Scholar 

  4. B. Sharma, A. K. Dangi, and P. Shukla, J. Environ. Manage. 210, 10 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. A. Adak, M. Bandyopadhyay, and A. Pal, Sep. Purif. Technol. 44, 139 (2005).

    Article  CAS  Google Scholar 

  6. F. D. Ardejani et al., Dyes Pigments 73, 178 (2007).

    Article  Google Scholar 

  7. J. H. Churchley, Water Sci. Technol. 30, 275 (1994).

    Article  CAS  Google Scholar 

  8. R. J. Stephenson and S. J. Duff, Water Res. 30, 781 (1996).

    Article  CAS  Google Scholar 

  9. I. A. Salem and M. S. El-Maazawi, Chemosphere 41, 1173 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. E. Coro and S. Laha, Water Res. 35, 1851 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. C. Namasivayam and D. Kavitha, Dyes Pigments 54, 47 (2002).

    Article  CAS  Google Scholar 

  12. V. Vimonses et al., Chem. Eng. J. 148, 354 (2009).

    Article  CAS  Google Scholar 

  13. H. Zheng et al., J. Hazard. Mater. 158, 577 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. E. Y. Ozmen and M. Yilmaz, J. Hazard. Mater. 148, 303 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. L. Ding et al., Colloids Surf., A 446, 1 (2014).

    Article  CAS  Google Scholar 

  16. Y. Dehghani and M. Dehghani, Am. J. Life Sci. Res. 1 (3) (2013).

  17. S. Chakraborty et al., Chemosphere 58, 1079 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. H. S. Mohamed et al., Heliyon 5, e01287 (2019).

  19. A. M. Rabie et al., Res. Chem. Intermed. 46, 1955 (2020).

    Article  CAS  Google Scholar 

  20. N. Soliman et al., Environ. Technol. Innov. 15, 100365 (2019).

  21. T. Lee, J.-W. Park, and J.-H. Lee, Chemosphere 56, 571 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. M. Ajmal et al., J. Hazard. Mater. 79, 117 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. N. R. Bishnoi et al., Bioresour. Technol. 91, 305 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. M. A. P. Cechinel and A. A. U. de Souza, J. Cleaner Prod. 65, 342 (2014).

    Article  CAS  Google Scholar 

  25. I. Alinnor, Fuel 86, 853 (2007).

    Article  CAS  Google Scholar 

  26. V. K. Gupta et al., Water Res. 37, 4038 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. J. Sun et al., Polym. Degrad. Stab. 84, 331 (2004).

    Article  CAS  Google Scholar 

  28. A. Kumar et al., J. Mater. Phys. Chem. 2, 1 (2014).

    Google Scholar 

  29. D. A. Cerqueira, G. Rodrigues Filho, and C. da Silva Meireles, Carbohydr. Polym. 69, 579 (2007).

    Article  CAS  Google Scholar 

  30. A. Pandey et al., Bioresour. Technol. 74, 69 (2000).

    Article  CAS  Google Scholar 

  31. N. Khamis Soliman et al., J. Mater. Res. Technol. 8, 1798 (2019).

    Article  Google Scholar 

  32. M. Khedr, K. A. Halim, and N. Soliman, Mater. Lett. 63, 598 (2009).

    Article  CAS  Google Scholar 

  33. S. K. Lagergren, Sven. Vetenskapsakad. Handingarl 24, 1 (1898).

    Google Scholar 

  34. Y. L. Kang et al., Asia-Pacif. J. Chem. Eng. 8, 811 (2013).

    CAS  Google Scholar 

  35. S. Azizian, J. Colloid Interface Sci. 276, 47 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. S. Çoruh, F. Geyikçi, and O. Nuri Ergun, Environ. Technol. 32, 1183 (2011).

    Article  PubMed  Google Scholar 

  37. T. Depci et al., Physicochem. Probl. Miner. Process. 48 (1) (2012).

  38. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918).

    Article  CAS  Google Scholar 

  39. H. Freundlich, J. Phys. Chem. 57, 385 (1906).

    CAS  Google Scholar 

  40. O. Ozdemir et al., Dyes Pigments 62, 49 (2004).

    Article  CAS  Google Scholar 

  41. E. Demirbas and M. Nas, Desalination 243, 8 (2009).

    Article  CAS  Google Scholar 

  42. J. C. Serna-Carrizales et al., J. Mol. Liq. 324, 114740 (2021).

  43. A. I. Abd El-Mageed and T. Ogawa, RSC Adv. 9, 28135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Forsyth, J. Sun, and D. R. MacFarlane, Solid State Ionics 112, 161 (1998).

    Article  CAS  Google Scholar 

  45. R. K. Mohamed, P. W. Peterson, and I. V. Alabugin, Chem. Rev. 113, 7089 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. G. Gliemann and K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978).

    Google Scholar 

  47. B. Hinterstoisser and L. Salmén, Cellulose 6, 251 (1999).

    Article  CAS  Google Scholar 

  48. X. Colom et al., Polym. Degrad. Stab. 80, 543 (2003).

    Article  CAS  Google Scholar 

  49. K. Pandey, J. Appl. Polym. Sci. 71, 1969 (1999).

    Article  CAS  Google Scholar 

  50. K. Pandey and A. Pitman, Int. Biodeterior. Biodegrad. 52, 151 (2003).

    Article  CAS  Google Scholar 

  51. B. Hameed, D. Mahmoud, and A. Ahmad, Colloids Surf., A 316, 78 (2008).

    Article  CAS  Google Scholar 

  52. L. Ashly and S. Thirumalisamy, Environ. Res. 22, 113 (2012).

    Google Scholar 

  53. S. K. Bajpai and A. Jain, Acta Chim. Slov. 57, 751 (2010).

    CAS  PubMed  Google Scholar 

  54. N. M. Mahmoodi and Z. Mokhtari-Shourijeh, Desalin. Water Treatm. 57, 20076 (2016).

    Article  CAS  Google Scholar 

  55. S. Patil et al., Int. J. Environ. Sci. 1, 1116 (2011).

    CAS  Google Scholar 

  56. N. P. Raval, P. U. Shah, and N. K. Shah, Water Conserv. Sci. Eng. 1, 69 (2016).

    Article  Google Scholar 

  57. S. V. Mohan, N. C. Rao, and J. Karthikeyan, J. Hazard. Mater. 90, 189 (2002).

    Article  Google Scholar 

  58. M. Sprynskyy et al., J. Colloid Interface Sci. 304, 21 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. V. K. Garg et al., Dyes Pigments 63, 243 (2004).

    Article  CAS  Google Scholar 

  60. H. S. Mohamed et al., Int. J. Environ. Anal. Chem., 1 (2019).

  61. M. Mushtaq et al., J. Environ. Manage. 176, 21 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. A. Rashid et al., Ecol. Eng. 91, 459 (2016).

    Article  Google Scholar 

  63. A. S. Özcan, B. Erdem, and A. Özcan, Colloids Surf., A 266, 73 (2005).

    Article  Google Scholar 

  64. K. R. Hall et al., Ind. Eng. Chem. Fundam. 5, 212 (1966).

    Article  CAS  Google Scholar 

  65. S. Yadav et al., Catena 100, 120 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein S. Mohamed.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.S., Tawfik, W.Z., Hamza, Z.S. et al. Removal of Dye by Adsorption on Nitric Acid Treated Sugar Bagasse Wastes, an Experimentally, Theoretically, and Computational Studies. Russ. J. Phys. Chem. 96, 3232–3243 (2022). https://doi.org/10.1134/S0036024423020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423020085

Keywords:

Navigation