Skip to main content
Log in

Dicationic Ionic Liquids As Heat Transfer Fluids in Vacuum

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Dicationic ionic liquids with a polymethylene (nC = 5, 9) linker between the imidazolium cations and the bis(trifluoromethylsulfonyl)imide anion have been synthesized. Their thermal stability was studied, and the melting points, viscosity, and volatility in vacuum were measured. The possibility of using the obtained ionic liquids as heat transfer fluids in vacuum was assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. P. Padinhattath, B. Chenthamara, and R. L. Gardas, Acta Innov., No. 38, 62 (2021). https://doi.org/10.32933/ActaInnovations.38.6

  2. G. Poonam and R. Singh, in Applications of Nanotechnology for Green Synthesis, Ed. by Inamuddin and A. M. Asiri (Springer Nature, Switzerland, 2020), p. 41. https://doi.org/10.1007/978-3-030-44176-0

    Book  Google Scholar 

  3. T. Itoh, Chem. Rev. 117, 10567 (2017). https://doi.org/10.1021/acs.chemrev.7b00158

    Article  CAS  PubMed  Google Scholar 

  4. Material Synthesis in Ionic Liquids, Chem. Open 10, 56 (2021). https://chemistry-europe.onlinelibrary.wiley.com/toc/21911363/2021/10/2

    Google Scholar 

  5. M. G. Montalban, G. Carissimi, A. A. Lozano-Pérez, et al., in Recent Advances in Ionic Liquids, Ed. by Mohammed Muzibur Rahman (IntechOpen, Rijeka, 2018). https://doi.org/10.5772/intechopen.78766

    Book  Google Scholar 

  6. K. Verma, A. Sharma, and R. Badru, Curr. Res. Green Sustainable Chem. 4, 100060 (2021). https://doi.org/10.1016/j.crgsc.2021.100060

  7. A. Brzeczek-Szafran, J. Wiecławik, N. Barteczko, et al., Green Chem. 23, 4421 (2021). https://doi.org/10.1039/d1gc00515d

    Article  CAS  Google Scholar 

  8. M. Watanabe, M. L. Thomas, S. Zhang, et al., Chem. Rev. 117, 7190 (2017). https://doi.org/10.1021/acs.chemrev.6b00504

    Article  CAS  PubMed  Google Scholar 

  9. Q. Yang, Z. Zhang, X.-G. Sun, et al., Chem. Soc. Rev. 47, 2020 (2018). https://doi.org/10.1039/C7CS00464H

    Article  CAS  PubMed  Google Scholar 

  10. S. P. M. Ventura, F. A. Silva, M. V. Quental, et al., Chem. Rev. 117, 6984 (2017). https://doi.org/10.1021/acs.chemrev.6b00550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Guo, Z. D. Tucker, Y. Wang, et al., Nat. Commun. 12, 437 (2021). https://doi.org/10.1038/s41467-020-20706-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Guo and P. I. Victoria, in Ionic Liquids–Thermophysical Properties and Application (IntechOpen, Rijeka, 2021). https://doi.org/10.5772/intechopen.96428

    Book  Google Scholar 

  13. M. Cai, Q. Yu, W. Liu, and F. Zhou, Chem. Soc. Rev. 49, 7753 (2020). https://doi.org/10.1039/d0cs00126k

    Article  CAS  PubMed  Google Scholar 

  14. J. Ren, L. Zheng, Y. Wang, et al., Colloids Surf., A 556, 239 (2018). https://doi.org/10.1016/j.colsurfa.2018.08.038

    Article  CAS  Google Scholar 

  15. A. Tsurumaki, T. Iwata, M. Tokuda, et al., Electrochim. Acta 308, 115 (2019). https://doi.org/10.1016/j.electacta.2019.04.031

    Article  CAS  Google Scholar 

  16. A. K. Chauhan, S. K. Srivastava, and S. Singh, in Bioenergy Research: Integrative Solution for Existing Roadblock, Ed. by M. Srivastava, N. Srivastava, and R. Singh (Springer Nature, Switzerland AG, 2020), p. 157. https://doi.org/10.1007/978-981-16-1888-8_8

    Book  Google Scholar 

  17. A. Kamimura, Y. Shiramatsu, and T. Kawamoto, Green Energy Environ. 4, 166 (2019). https://doi.org/10.1016/j.gee.2019.01.002

    Article  Google Scholar 

  18. T. G. Weldemhret, A. B. Banares, K. R. M. Ramos, et al., Renewable Energy 152, 283 (2020). https://doi.org/10.1016/j.renene.2020.01.054

    Article  CAS  Google Scholar 

  19. G. Yu, C. Dai, B. Wu, et al., Green Energy Environ. 6, 350 (2021). https://doi.org/10.1016/j.gee.2020.10.022

    Article  Google Scholar 

  20. T. L. Oladosu, A. T. Baheta, and A. N. Oumer, Int. J. Energy Res. 45, 8420 (2021). https://doi.org/10.1002/er.6482

    Article  CAS  Google Scholar 

  21. F. Ren, J. Wang, F. Xie, et al., Green Chem. 22, 2162 (2020). https://doi.org/10.1039/c9gc03738a

    Article  CAS  Google Scholar 

  22. L. Zhao, H. Liu, Y. Du, et al., New J. Chem. 44, 15410 (2020). https://doi.org/10.1039/d0nj01478h

    Article  CAS  Google Scholar 

  23. S. N. Pedro, R. C. S. Freire, A. J. D. Silvestre, and M. G. Freire, Encyclopedia 1, 324 (2021). https://doi.org/10.3390/encyclopedia1020027

    Article  Google Scholar 

  24. A. T. Silva, C. Teixeira, E. F. Marques, et al., ChemMedChem 16, 1 (2021).https://doi.org/10.1002/cmdc.202100215

    Article  CAS  Google Scholar 

  25. M. E. El-Hefnawy, A. M. Atta, M. El-Newehy, and A. I. Ismail, J. Mater. Res. Technol. 9, 14682 (2020). https://doi.org/10.1016/j.jmrt.2020.10.038

    Article  CAS  Google Scholar 

  26. Y. Rena, Y. Zhaib, L. Wub, et al., Colloids Surf., A 609, 125678 (2021). https://doi.org/10.1016/j.colsurfa.2020.125678

  27. S. K. Nandwani, N. I. Malek, M. Chakraborty, and S. Gupta, Energy Fuels 34, 6544 (2020). https://doi.org/10.1021/acs.energyfuels.0c00343

    Article  CAS  Google Scholar 

  28. H. S. Butt, K. C. Lethesh, and A. Fiksdah, Sep. Purif. Technol. 248, 116959 (2020). https://doi.org/10.1016/j.seppur.2020.116959

  29. H. Liu, H. Xu, M. Hua, et al., Fuel 260, 116200 (2020). https://doi.org/10.1016/j.fuel.2019.116200

  30. A. F. Bouarab, J.-P. Harvey, and C. Robelin, Phys. Chem. Chem. Phys. 23, 733 (2021). https://doi.org/10.1039/D0CP05787H

    Article  CAS  PubMed  Google Scholar 

  31. Y.-J. Lin, N. Hossain, and C.-C. Chen, J. Mol. Liq. 329, 115524 (2021). https://doi.org/10.1016/j.molliq.2021.115524

  32. N. Nasirpoura, M. Mohammadpourfarda, and S. Z. Heris, Chem. Eng. Res. Des. 160, 264 (2020). https://doi.org/10.1016/j.cherd.2020.06.006

    Article  CAS  Google Scholar 

  33. A. J. Greer, J. Jacquemin, and C. Hardacre, Molecules 25, 5207 (2020). https://doi.org/10.3390/molecules25215207

    Article  CAS  PubMed Central  Google Scholar 

  34. M. E. van Valkenburg, R. L. Vaughn, M. Williams, and J. S. Wilkes, Thermochim. Acta 425, 181 (2005). https://doi.org/10.1016/j.tca.2004.11.013

    Article  CAS  Google Scholar 

  35. P. Nancarrow and H. Mohammed, ChemBioEng Rev. 4, 1 (2017). https://doi.org/10.1002/cben.201600021

    Article  Google Scholar 

  36. M. Meikandan, P. G. Kumar, M. Sundarraj, and D. Yogaraj, Int. J. Ambient Energy 41, 911 (2020). https://doi.org/10.1080/01430750.2018.1492449

    Article  CAS  Google Scholar 

  37. L. Chao, T. Niu, H. Gu, et al., Research 2020, 2616345 (2020). https://doi.org/10.34133/2020/2616345

  38. M. Meikandan, P. G. Kumar, M. Sundarraj, and D. Yogaraj, Int. J. Ambient Energy 39, 1 (2018). https://doi.org/10.1080/01430750.2018.1492449

    Article  CAS  Google Scholar 

  39. H. M. Ariyadi, N. Giannetti, S. Yamaguchi, and K. Saito, in Proceedings of the ICR 2019–25th IIR International Congress on Refrigeration Science and Technology, Ed. by V. Minea (Int. Inst. Refriger., 2019), p. 1335. https://doi.org/10.18462/iir.icr.2019.1033

  40. T. M. Becker, M. Wang, A. Kabra, et al., Ind. Eng. Chem. Res. 57, 5442 (2018). https://doi.org/10.1021/acs.iecr.8b00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. Tomida, in Impact of Thermal Conductivity on Energy Technologies, Ed. by A. Shahzad (IntechOpen, Rijeka, 2018), Chap. 2. https://doi.org/10.5772/intechopen.76559

    Book  Google Scholar 

  42. A. A. Minea and S. M. S. Murshed, Nanomaterials 11, 1039 (2021). https://doi.org/10.3390/nano11041039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. V. G. Krasovskiy, G. I. Kapustin, O. B. Gorbatsevich, et al., Molecules 25, 2949 (2020). https://doi.org/10.3390/molecules25122949

    Article  CAS  PubMed Central  Google Scholar 

  44. H. Shirota, T. Mandai, H. Fukazawa, and T. Kato, J. Chem. Eng. Data 56, 2453 (2011). https://doi.org/10.1021/je2000183

    Article  CAS  Google Scholar 

  45. H. Zhang, J. Liu, M. Li, and B. Yang, J. Mol. Liq. 269, 738 (2018). https://doi.org/10.1016/j.molliq.2018.08.037

    Article  CAS  Google Scholar 

  46. Q. Q. Baltazar, J. Chandawalla, K. Sawyer, and J. L. Anderson, Colloids Surf., A 302, 150 (2007). https://doi.org/10.1016/j.colsurfa.2007.02.012

    Article  CAS  Google Scholar 

  47. H. Kumar and G. Kaur, Front. Chem. 9, 667941 (2021). https://doi.org/10.3389/fchem.2021.667941

  48. D. A. S. Agostinho, A. R. Jesus, A. B. R. Silva, et al., J. Pharm. Sci. 110, 2489 (2021). https://doi.org/10.1016/j.xphs.2021.01.014

    Article  CAS  PubMed  Google Scholar 

  49. S. A. Perez, M. G. Montalban, G. Carissimi, et al., J. Hazard. Mater. 385, 121513 (2020). https://doi.org/10.1016/j.jhazmat.2019.121513

  50. B. L. Kuhn, B. F. Osmari, T. M. Heinen, et al., J. Mol. Liq. 308, 112983 (2020). https://doi.org/10.1016/j.molliq.2020.112983

  51. D. H. Zaitsau, R. Ludwig, and S. R. Verevkin, Phys. Chem. Chem. Phys. 23, 7398 (2021). https://doi.org/10.1039/d0cp05439a

    Article  CAS  PubMed  Google Scholar 

  52. J. Ingenmey, M. von Domaros, E. Perlt, et al., J. Chem. Phys. 148, 193822 (2018). https://doi.org/10.1063/1.5010791

  53. Y. Xuzhao, W. Jun, and F. Yun, Prog. Chem. 28, 269 (2016). https://doi.org/10.7536/PC150904

    Article  CAS  Google Scholar 

  54. B. Haddad, J. Kiefer, H. Brahim, et al., Appl. Sci. 8, 1043 (2018). https://doi.org/10.3390/app8071043

    Article  CAS  Google Scholar 

  55. Y. Cao and T. Mu, Ind. Eng. Chem. Res. 53, 8651 (2014). https://doi.org/10.1021/ie5009597

    Article  CAS  Google Scholar 

  56. L. Ramenskaya, E. R. Grishina, and N. Kudryakova, J. Mol. Liq. 272, 759 (2018). https://doi.org/10.1016/j.molliq.2018.10.005

    Article  CAS  Google Scholar 

  57. V. G. Krasovskiy, E. A. Chernikova, L. M. Glukhov, G. I. Kapustina, and A. A. Koroteev, Russ. J. Phys. Chem. A 92, 2379 (2018). https://doi.org/10.1134/S0036024418120245

    Article  CAS  Google Scholar 

  58. T. Mandai, M. Imanari, and K. Nishikawa, Chem. Phys. Lett. 543, 72 (2012). https://doi.org/10.1016/j.cplett.2012.06.026

    Article  CAS  Google Scholar 

  59. Solution Chemistry Research Progress, Ed. by D. V. Bostrelli (Nova Science, New York, 2011).

    Google Scholar 

  60. M. Bier and S. Dietrich, Mol. Phys. 108, 211 (2010). https://doi.org/10.1080/00268971003604609

    Article  CAS  Google Scholar 

  61. V. G. Krasovskiy, E. A. Chernikova, L. M. Glukhov, et al., Mendeleev Commun. 27, 605 (2017). https://doi.org/10.1016/j.mencom.2017.11.022

    Article  CAS  Google Scholar 

  62. J. R. Armstrong, C. Hurst, R. G. Jones, et al., Phys. Chem. Chem. Phys. 9, 982 (2007). https://doi.org/10.1039/b615137j

    Article  CAS  PubMed  Google Scholar 

  63. N. S. Chilingarov, A. A. Medvedev, G. S. Deyko, et al., Chem. Phys. Lett. 657, 8 (2016). https://doi.org/10.1016/j.cplett.2016.05.015

    Article  CAS  Google Scholar 

  64. M. A. A. Rocha, J. A. R. Coutinho, and L. M. N. B. F. Santos, J. Chem. Phys. 141, 134502 (2014). https://doi.org/10.1063/1.4896704

  65. C. Maton, N. de Vos, and C. V. Stevens, Chem. Soc. Rev. 42, 5963 (2013). https://doi.org/10.1039/c3cs60071h

    Article  CAS  PubMed  Google Scholar 

  66. L. Liu, Y. Zhao, J. Wu, et al., J. Mol. Liq. 323, 115007 (2021). https://doi.org/10.1016/j.molliq.2020.115007

  67. D. H. Zaitsau and S. R. Verevkin, Z. Anorg. Allgem. Chem. 647, 547 (2021). https://doi.org/10.1002/zaac.202000473

    Article  CAS  Google Scholar 

  68. M. Ahrenberg, M. Beck, and C. Neise, Phys. Chem. Chem. Phys. 18, 21381 (2016). https://doi.org/10.1039/c6cp01948j

    Article  CAS  PubMed  Google Scholar 

  69. V. G. Krasovskiy, G. I. Kapustin, L. M. Glukhov, et al., Mendeleev Commun. 30, 114 (2020). https://doi.org/10.1016/j.mencom.2020.01.038

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Krasovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasovskii, V.G., Kapustin, G.I., Glukhov, L.M. et al. Dicationic Ionic Liquids As Heat Transfer Fluids in Vacuum. Russ. J. Phys. Chem. 96, 1465–1473 (2022). https://doi.org/10.1134/S0036024422070172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422070172

Keywords:

Navigation