Skip to main content
Log in

Theoretical Study of Photoassociation of Alkali-Metal Dimers

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The photoassociation of alkali metal molecules (Rb2, Cs2, and RbCs) at short range is investigated in theory. Based on ab initio calculations to rationalize Franck–Condon filtering, the target states of photoassociation have been obtained. They correspond to vibrational transition levels from excited state (Rb2: \({v}{\kern 1pt} '\) = 17–21, Cs2: \({v}{\kern 1pt} '\) = 21–25, and RbCs: \({v}{\kern 1pt} '\) = 18–22) to ground state. By using quantum wave-packet dynamic methods, the yields with time evaluation of the selected states are calculated interacting with a resonant laser pulse. Using gaussian pulse leads to the yield of Rb2 up to 82% at 860 fs. After a laser pulse, the positive chirp promotes the yield of vibrational states to increase, but the negative chirp inhibits it. That is to say, by changing the laser parameters and pulse shapes, it is much easier to control the photochemical process along desired direction. For photoassociation of alkali-metal dimers, homonuclear molecules have a better response to laser pulse than heteronuclear molecules. The efficiency of photochemical reaction of homonuclear molecules is much better and the photoassociative yield is much higher. Those conditions will provide an important reference and suggest a scheme for a feasible photoassociation for further experimental and theoretical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. R. Thorsheim, J. Weiner, and P. S. Julienne, Phys. Rev. Lett. 58, 2420 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Rev. Mod. Phys. 78, 483 (2006).

    Article  CAS  Google Scholar 

  3. A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Phys. Rev. Lett. 80, 4402 (1998).

    Article  CAS  Google Scholar 

  4. O. Dulieu and C. Gabbanini, Rep. Prog. Phys. 72, 086401 (2009).

    Article  Google Scholar 

  5. L. D. Carr and J. Ye, New J. Phys. 11, 055009 (2009).

    Article  Google Scholar 

  6. C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. de Mille, New J. Phys. 16, 023018 (2014).

    Article  CAS  Google Scholar 

  7. P. Pillet, A. Crubellier, A. Bleton, O. Dulieu, P. Nosbaum, I. Mourachko, and F. Masnou-Seeuws, J. Phys. B 30, 2801 (1997).

    Article  CAS  Google Scholar 

  8. R. Côté and A. Dalgarno, Phys. Rev. A 58, 498 (1998).

    Article  Google Scholar 

  9. J. L. Bohn and P. S. Julienne, Phys. Rev. A 60, 414 (1999).

    Article  CAS  Google Scholar 

  10. C. M. Dion, C. Drag, O. Dulieu, B. L. Tolra, F. M. Seeuws, and P. Pillet, Phys. Rev. Lett. 86, 2253 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. J. H. Han, Jin Hyoun Kang, M. Lee, and Y. Shin, Phys. Rev. A 97, 013401 (2018).

    Article  Google Scholar 

  12. J. Perez-Rlos, M. Lepers, and O. Dulieu, Phys. Rev. Lett. 115, 073201 (2015).

    Article  Google Scholar 

  13. A. H. Zewail, Angew. Chem. Int. Ed. 39, 2586 (2000).

    Article  CAS  Google Scholar 

  14. J. M. Sage, S. Sainis, T. Bergeman, and D. de Mille, Phys. Rev. Lett. 94, 203001 (2005).

    Article  PubMed  Google Scholar 

  15. C. Chandre, J. Mahecha, and J. P. Salas, Phys. Rev. A 95, 033424 (2017).

    Article  Google Scholar 

  16. B. Y. Chang, S. Shin, Y. C. Park, Y. S. Lee, and I. R. Sola, Eur. Phys. J. D 71, 167 (2017).

    Article  Google Scholar 

  17. T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson, and C. R. le Sueur, Phys. Rev. Lett. 113, 205301 (2014).

    Article  PubMed  Google Scholar 

  18. K. Bergmann, N. V. Vitanov, and B. W. Shore, J. Chem. Phys. 142, 170901 (2015).

    Article  PubMed  Google Scholar 

  19. E. A. Pazyuk, A. V. Zaitsevskii, A. V. Stolyarov, M. Tamanis, and R. Ferber, Russ. Chem. Rev. 84, 1001 (2015).

    Article  CAS  Google Scholar 

  20. J. Tennyson, J. Chem. Phys. 145, 120901 (2016).

    Article  PubMed  Google Scholar 

  21. J. Bai, E. H. Ahmed, B. Beser, Y. Guan, S. Kotochigova, and A. M. Lyyra, Phys. Rev. A 83, 032514 (2011).

    Article  Google Scholar 

  22. A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. de Mille, Phys. Rev. Lett. 92, 153001 (2004).

    Article  PubMed  Google Scholar 

  23. M. Rakic, R. Beuc, N. Bouloufa-Maafa, O. Dulieu, and R. Vexiau, J. Chem. Phys. 144, 204310 (2016).

    Article  PubMed  Google Scholar 

  24. P. K. Molony et al., Phys. Rev. Lett. 113, 255301 (2014).

    Article  PubMed  Google Scholar 

  25. K. Alps, A. Kruzins, O. Nikolayeva, M. Tamanis, and R. Ferber, Phys. Rev. A 96, 022510 (2017).

    Article  Google Scholar 

  26. H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, P. Celani, T. Korona, A. Mitrushenkov, and G. Rauhut, MOLPRO is a Package of ab initio Programs, Version 2009.1. http://www.molpro.net.

  27. P. J. Knowles and H. J. Werner, Chem. Phys. Lett. 115, 259 (1985).

    Article  CAS  Google Scholar 

  28. H. J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985).

    Article  CAS  Google Scholar 

  29. S. R. Laughoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).

    Article  Google Scholar 

  30. I. S. Lim, P. Schwerdtfeger, B. Metz, and H. Stoll, J. Chem. Phys. 122, 104103 (2005).

    Article  PubMed  Google Scholar 

  31. R. A. Carollo, J. L. Carini, E. E. Eyler, P. L. Gould, and W. C. Stwalley, J. Phys. B: At. Mol. Opt. Phys. 49, 194001 (2016).

    Article  Google Scholar 

  32. C. M. Dion, A. Hashemloo, and G. Rahali, Comput. Phys. Commun. 185, 407 (2014).

    Article  CAS  Google Scholar 

  33. A. D. Bandrauk, Molecules in Laser Fields (Marcel Dekker, New York, 1994).

    Google Scholar 

  34. G. G. Balint-Kurti, R. N. Dixon, and C. C Marston, J. Chem. Soc. Faraday Trans. 86, 1741 (1990).

    Article  CAS  Google Scholar 

  35. C. C. Marston and G. G. Balint-Kurti, J. Chem. Phys. 91, 3571 (1989).

    Article  CAS  Google Scholar 

  36. G. G. Balint-Kurti and C. L. Ward, Comput. Phys. Commun. 67, 285 (1991).

    Article  CAS  Google Scholar 

  37. A. Zaitsevskii, N. S. Mosyagin, A. V. Stolyarov, and E. Eliav, Phys. Rev. A 96, 022516 (2017).

    Article  Google Scholar 

  38. E. A. Pazyuk, E. I. Revina, and A. V. Stolyarov, J. Quant. Spectrosc. Radiat. Transfer 177, 283 (2016).

    Article  CAS  Google Scholar 

  39. A. N. Drozdova, A. V. Stolyarov, M. Tamanis, et al., Phys. Rev. A 88, 022504 (2013).

    Article  Google Scholar 

  40. H. Salami, T. Bergeman, B. Beser, et al., Phys. Rev. A 80, 022515 (2009).

    Article  Google Scholar 

  41. A. Znotins, A. Kruzins, M. Tamanis, et al., Phys. Rev. A 100, 4042507 (2019).

    Article  Google Scholar 

  42. J. Bai, E. H. Ahmed, B. Beser, et al., Phys. Rev. A 83, 032514 (2011).

    Article  Google Scholar 

  43. A. Kruzins, K. Alps, O. Docenko, et al., J. Chem. Phys. 141, 184309 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. O. Docenko, M. Tamanis, R. Ferber, et al., Phys. Rev. A 81, 042511 (2010).

    Article  Google Scholar 

  45. R. J. le Roy, Chemical Physics Research Report No. 663 (Univ. of Waterloo, Waterloo, ON, 2007).

Download references

ACKNOWLEDGMENTS

The financial support from the National Natural Science Foundation of China, Grant/Award nos. 11947126, 61701385; Shanxi Provincial Department of Education, grant/award no. 20JK0689; Science Project of Beilin District, grant/award no. GX2138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenjiang Wu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Wang, J., Tan, Z. et al. Theoretical Study of Photoassociation of Alkali-Metal Dimers. Russ. J. Phys. Chem. 95 (Suppl 2), S396–S405 (2021). https://doi.org/10.1134/S0036024421150061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421150061

Keywords:

Navigation