Skip to main content
Log in

A Highly Stable Li4Ti5O12 Suspension Anolyte for Lithium Ion Flow Batteries

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A flow battery is one of the most promising candidates for large scale energy storage devices due to its ease of design, construction, and control, while its energy density is yet to be enhanced. The lithium ion suspension electrode, which is usually comprised of electrolyte, active material and other additives, is an effective way to enhance the energy density of flow batteries due to their relatively high active material loading per unit of volume. However, a stable suspension electrode is difficult to be obtained mainly for two reasons, the high density of common electrode materials and the poor conductive network in the suspension. In this work, a stable Li4Ti5O12 (LTO) suspension anolyte is successfully prepared with the aid of polyethylene oxide (PEO) and carbon nanotubes (CNTs), in which PEO stabilizes the anolyte by intramolecular repulsion force, and CNT builds an integrated conductive network. The anolyte delivers a high reversible capacity of more than 140 mA h/g under 0.5C rate, and it keeps more than 80% of its initial capacity in 200 cycles was never been achieved in any previous research work. This strategy is also hopefully suitable for the design of other suspension electrodes, such as graphite and LiFePO4, which shine a light on high energy density flow battery development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. Pan and Q. Wang, Molecules 20, 20499 (2015).

    Article  CAS  Google Scholar 

  2. D. Larcher and J. M. Tarascon, Nat. Chem. 7, 19 (2015).

    Article  CAS  Google Scholar 

  3. C. J. Barnhart, M. Dale, A. R. Brandt, and S. M. Benson, Energy Environ. Sci. 6, 2804 (2013).

    Article  Google Scholar 

  4. G. L. Soloveichik, Chem. Rev. 115, 11533 (2015).

    Article  CAS  Google Scholar 

  5. C. Wang, Q. Lai, K. Feng, et al., Nano Energy 44, 240 (2018).

    Article  CAS  Google Scholar 

  6. K. Wang, K. Jiang, B. Chung, et al., Nature (London, U.K.) 514, 348 (2014).

    Article  CAS  Google Scholar 

  7. S. Xu, Y. Cheng, L. Zhang, et al., Nano Energy 51, 113 (2018).

    Article  CAS  Google Scholar 

  8. J. M. Álvaro Cunha, N. Rodrigues, and F. P. Brito, Int. J. Energy Res. (2014).

  9. C. A. Aubin, S. Choudhury, R. Jerch, et al., Nature (London, U.K.) (2019).

  10. B. Li and J. Liu, Natl. Sci. Rev., nww098 (2017).

  11. S. Xu, L. Zhang, X. Zhang, et al., J. Mater. Chem. A 5, 12904 (2017).

    Article  CAS  Google Scholar 

  12. Y. Lu and J. B. Goodenough, J. Mater. Chem. 21, 10113 (2011).

    Article  CAS  Google Scholar 

  13. W. Yan, C. Wang, J. Tian, et al., Nat. Commun. 10, 2513 (2019).

    Article  Google Scholar 

  14. M. Duduta, B. Ho, V. C. Wood, et al., Adv. Energy Mater. 1, 511 (2011).

    Article  CAS  Google Scholar 

  15. S. Xu, L. Zhang, X. Zhang, et al., J. Mater. Chem. A 5, 12904 (2017).

    Article  CAS  Google Scholar 

  16. F. Y. Fan, W. H. Woodford, Z. Li, N. Baram, et al., Nano Lett. 14, 2210 (2014).

    Article  CAS  Google Scholar 

  17. L. Madec, M. Youssry, M. Cerbelaud, et al., J. Electrochem. Soc. A 161, 693 (2014).

    Article  Google Scholar 

  18. J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992).

    Google Scholar 

  19. T.-S. Wei, F. Y. Fan, A. Helal, et al., Adv. Energy Mater. 5, 1500535 (2015).

  20. L. Madec, M. Youssry, M. Cerbelaud, et al., Chempluschem 80, 396 (2015).

    Article  CAS  Google Scholar 

  21. Lithium Titanate (LTO) Cells–Technical Advantages (GWL Power, 2018).

  22. LTO Batteries (AA Portable Power Corp., 2018).

  23. R. B. S. Ball, Johnson Matthey Technol. Rev. 59, 30 (2015).

    Google Scholar 

  24. K. Xu, Chem. Rev. 114, 11503 (2014).

    Article  CAS  Google Scholar 

  25. D. E. Fenton, J. M. Parker, and P. V. Wright, Polymer 14, 589 (1973).

    Article  CAS  Google Scholar 

  26. L. Gitelman, M. Israeli, A. Averbuch, et al., J. Comput. Phys. 227, 1162 (2007).

    Article  CAS  Google Scholar 

  27. S. K. Fullerton-Shirey and J. K. Maranas, Electrolytes 42, 2142 (2009).

    CAS  Google Scholar 

  28. P. V. Wright, Br. Polym. J. 7, 19 (1975).

    Google Scholar 

  29. G. Zardalidis, E. Ioannou, S. Pispas, and G. Floudas, Macromolecules 46, 2705 (2013).

    Article  CAS  Google Scholar 

  30. H. Chen and Y.-C. Lu, Adv. Energy Mater. 6, 1502183 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Development Program of China (2016YFB0100100), National Natural Science Foundation of China (21706261), Beijing Natural Science Foundation (L172045). Muhammad Naeem acknowledges the support of the CAS-TWAS President’s Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Zhang or Suojiang Zhang.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, M., Zhang, L., Qian, W. et al. A Highly Stable Li4Ti5O12 Suspension Anolyte for Lithium Ion Flow Batteries. Russ. J. Phys. Chem. 95 (Suppl 1), S163–S170 (2021). https://doi.org/10.1134/S0036024421140156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421140156

Keywords:

Navigation