Skip to main content
Log in

Analysis of Temperature Gradients in the Hydroxyapatite Ceramics with the Additives of Multi-Walled Carbon Nanotubes

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The temperature difference between the outer surface and the center of a cylindrical sample of hydroxyapatite (HA) ceramics that arise during annealing/sintering were calculated. HA composites containing small amount of multi-walled carbon nanotubes (MWCNTs) were studied by using the X-ray diffraction methods. It is shown that macrostresses are higher in HA ceramic samples without nanotubes than in samples with MWCNTs. Compressive stresses arise on the outer surface of ceramics and tensile stress arise in the central part during the sintering due to the low thermal diffusivity of HA. This leads to the shifts of the X-ray diffraction peaks. The mechanical properties of HA ceramics with MWCNTs are enchanced due to both high mechanical properties of nanotubes and lower temperature gradients in HA ceramics during heating/cooling in the process of sintering. The additives of MWCNTs also lead to an increase in the density of the HA‒MWCNTs composite. The higher thermal diffusivity of MWCNTs, probably, allows to activate the sintering process in ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. White and M. Best, Int. J. Appl. Ceram. Technol. 4, 1 (2007).

    Article  CAS  Google Scholar 

  2. A. Faingold, R. Cohen Shahar, et al., J. Biomech. 47, 367 (2014).

    Article  CAS  Google Scholar 

  3. A. S. Zviagin, R. V. Chernozem, M. A. Surmeneva, et al., Eur. Polym. J. 117, 272 (2019).

    Article  CAS  Google Scholar 

  4. R. V. Chernozem, M. A. Surmeneva, B. Krause, et al., Appl. Surf. Sci. 426, 229 (2017).

    Article  CAS  Google Scholar 

  5. M. B. Sedelnikova, E. G. Komarova, Yu. P. Sharkeev, et al., Metals 8 (4), 1 (2018).

    Article  Google Scholar 

  6. K. A. Prosolov, O. A. Belyavskaya, and J. Linders, Coatings 9 (4), 1 (2019).

    Article  Google Scholar 

  7. Z. Z. Zyman and M. V. Tkachenko, J. Eur. Ceram. Soc. 31, 241 (2011).

    Article  CAS  Google Scholar 

  8. S. V. Dorozhkin, J. Funct. Biomater. 1, 22 (2010).

    Article  CAS  Google Scholar 

  9. Z. Z. Zyman, M. V. Tkachenko, and D. V. Polevodin, J. Mater. Sci. 19, 2819 (2008).

    CAS  Google Scholar 

  10. Ya. E. Geguzin, Physics of Sintering (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  11. I. M. Hung, W. J. Shih, et al., Int. J. Mol. Sci. 13, 13569 (2012).

    Article  CAS  Google Scholar 

  12. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, Acta Biomater. 9, 7591 (2013).

    Article  CAS  Google Scholar 

  13. R. L. Price, M. C. Waid, K. M. Haberstroh, and T. J. Webster, Biomater. 24, 1877 (2003).

    Article  CAS  Google Scholar 

  14. L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, Nano Lett. 6, 562 (2006).

    Article  CAS  Google Scholar 

  15. I. N. Mazov, I. A. Ilinykh, V. L. Kuznetsov, et al., J. Alloys Compd. 586, 440 (2014).

    Article  Google Scholar 

  16. M. S. Barabashko, M. V. Tkachenko, A. A. Neiman, A. N. Ponomarev, and A. E. Rezvanova, Appl. Nanosci. 10, 2601 (2020). https://doi.org/10.1007/s13204-019-01019-z

  17. T. Kijima and M. Tsutsumi, J. Am. Ceram. Soc. 62, 455 (1979).

    Article  CAS  Google Scholar 

  18. W. D. Kingery, J. Am. Ceram. Soc. 38, 3 (1955).

    Article  Google Scholar 

  19. Ya. S. Umansky, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  20. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X‑ray and Electron-Optical Analysis. Appendices (MISIS, Moscow, 1970) [in Russian].

    Google Scholar 

  21. A. A. Rusakov, X-ray Analysis of Metals (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  22. V. V. Sumarokov, A. Jezowski, D. Szewczyk, et al., Low Temp. Phys. 45, 347 (2019).

    Article  CAS  Google Scholar 

  23. M. I. Bagatskii, M. S. Barabashko, V. V. Sumarokov, et al., J. Low Temp. Phys. 187, 113 (2017).

    Article  CAS  Google Scholar 

  24. M. I. Bagatskii, V. V. Sumarokov, and M. S. Barabashko, Low Temp. Phys. 42, 94 (2016).

    Article  CAS  Google Scholar 

  25. V. V. Sumarokov, M. I. Bagatskii, and M. S. Barabashko, Spr. Proc. Phys. 156, 175 (2015). https://doi.org/10.1007/978-3-319-06611-0_15

    Article  CAS  Google Scholar 

  26. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  Google Scholar 

  27. H. L. Zhang, J. F. Li, B. P. Zhang, et al., Phys. Rev. B 75, 205407 (2007).

    Article  Google Scholar 

  28. B. Kumanek and D. Janas, J. Mater. Sci. 54, 7397 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

The work of A.E. Rezvanova and A.N. Ponomarev was supported the Government research assignment for ISPMS SB RAS (project nos. III.23.2.5 and FWRW-2021-0007) and M.S. Barabashko is the head of the project (grant no. 0119U102391) NAS of Ukraine (2019–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Barabashko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabashko, M.S., Tkachenko, M.V., Rezvanova, A.E. et al. Analysis of Temperature Gradients in the Hydroxyapatite Ceramics with the Additives of Multi-Walled Carbon Nanotubes. Russ. J. Phys. Chem. 95, 1017–1022 (2021). https://doi.org/10.1134/S0036024421050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421050058

Keywords:

Navigation