Skip to main content
Log in

Computer Modeling of Sodium in the Embedded Atom Model

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The pair contribution to the potential of sodium in the embedded atom model (EAM) is refined. Two potentials (EAM-2 and EAM-3) that differ in the shape of the embedding potentials are calculated from data on the shock compression and isothermal compression of sodium at 298 K. The main thermodynamic, structural, and diffusion properties of the models are calculated in two variants. The EAM-2 potential poorly describes the properties of sodium at 298 K, while the EAM-3 potential inaccurately characterizes the properties under conditions of shock compression. This means the fixed EAM potential fails to describe the temperature dependence of the properties of the metal. At 900 K, the pressure in the models with the EAM-3 potential is close to the data obtained ab initio. There is no prepeak of the pair correlation function of sodium, but the anomalous behavior of the pressure of the sodium bcc lattice at ∼19–25 GPa is confirmed. The melting lines in the sodium models are calculated in two variants with maxima at around 30 GPa. The problem of the predictive power of the embedded atom model is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  2. G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 305 (2013).

    Article  Google Scholar 

  3. D. K. Belashchenko, High Temp. 47, 494 (2009).

    Article  CAS  Google Scholar 

  4. D. K. Belashchenko, Phys. Usp. 56, 1176 (2013).

    Article  CAS  Google Scholar 

  5. D. K. Belashchenko, Liquid Metals. From Atomistic Potentials to Properties, Shock Compression, Earth’s Core and Nanoclusters (Nova Science, 2018).

  6. D. K. Belashchenko, High Temp. 51, 626 (2013).

    Article  CAS  Google Scholar 

  7. J. M. Gonzalez Miranda and V. Torra, J. Phys. F: Met.Phys. 13, 281 (1983).

    Article  CAS  Google Scholar 

  8. V. A. Polukhin, A. M. Bratkovskii, and V. G. Vaks, Phys. Status Solidi B 130, 87 (1985).

    Article  CAS  Google Scholar 

  9. D. K. Belashchenko, Inorg. Mater. 48, 79 (2012).

    Article  CAS  Google Scholar 

  10. D. K. Belashchenko, High Temp. 50, 331 (2012).

    Article  CAS  Google Scholar 

  11. A. K. Metya, A. Hens, and J. K. Singh, Fluid Phase Equilib. 313, 16 (2012).

    Article  Google Scholar 

  12. J. Y. Raty, E. R. Schwegler, and S. A. Bonev, UCRL-TR-233403 (2007).

  13. L. Koci, R. Ahuja, L. Vitos, and U. Pinsook, Phys. Rev. B 77, 132101 (2008).

    Article  Google Scholar 

  14. G. J. Kresse, J. Non-Cryst. Solids 192–193, 222 (1995).

    Article  Google Scholar 

  15. P. L. Silvestrelli, A. Alavi, and M. Parrinello, Phys. Rev. B 55, 15515 (1997).

    Article  CAS  Google Scholar 

  16. Y. Senda, F. Shimojo, and K. Hoshino, J. Phys. Soc. Jpn. 67, 2753 (1998).

    Article  CAS  Google Scholar 

  17. V. P. Levashov, D. V. Minakov, and L. R. Fokin, Vestn. OIVT RAN 1, 47 (2018).

    Google Scholar 

  18. W. Schommers, Phys. Rev. A 28, 3599 (1983).

    Article  CAS  Google Scholar 

  19. D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (MISIS, Moscow, 2005) [in Russian].

    Google Scholar 

  20. Y. Waseda, The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  21. E. Gregoryanz, O. Degtyareva, M. Somayazulu, et al., Phys. Rev. Lett. 94, 185502 (2005).

    Article  Google Scholar 

  22. C.-S. Zha and R. Boehler, Phys. Rev. B 31, 3199 (1985).

    Article  CAS  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (GITTL, Moscow, 1951; Pergamon, Oxford, 1980).

  24. www.webelements.com

  25. P. I. Bystrov, D. N. Kagan, G. A. Krechetova, and E. E. Shpil’rain, Liquid Metal Coolants for Heat Pipes and Power Plants (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  26. A. A. Bakanova, I. P. Dudoladov, and R. F. Trunin, Sov. Phys. Solid State 7, 1307 (1965).

    Google Scholar 

  27. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. California Press, Berkeley, 1980).

  28. M. Hanfland, I. Loa, and K. Syassen, Phys. Rev. B 65, 184109 (2002).

    Article  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Gostekhteorizdat, Moscow, 1954; Pergamon, New York, 1987).

  30. D. K. Belashchenko, Russ. J. Phys. Chem. A 87, 615 (2013).

    Article  CAS  Google Scholar 

  31. J. K. Fink and L. Leibowitz, Preprint No. ANL-RE-95/2 (Argonne Nat. Lab., 1995).

  32. R. E. Meyer and N. H. Nachtrieb, J. Chem. Phys. 23, 1851 (1955).

    Article  CAS  Google Scholar 

  33. D. K. Belashchenko, High Temp. 55, 47 (2017).

    Article  CAS  Google Scholar 

  34. R. W. Ohse, Handbook of Thermodynamics and Transport Properties of Alkali Metals (Blackwell, Oxford, 1985).

    Google Scholar 

  35. R. Grover, R. N. Keeler, F. J. Rogers, and G. C. Kennedy, J. Phys. Chem. Solids 30, 2091 (1969).

    Article  CAS  Google Scholar 

  36. Ch. L. Guillaume, E. Gregoryanz, O. Degtyareva, et al., Nat. Phys. 7, 211 (2011).

    Article  CAS  Google Scholar 

  37. R. Boehler and C.-S. Zha, Phys. B+C (Amsterdam, Neth.) 139, 233 (1986).

  38. E. E. McBride, Thesis (Univ. of Edinburgh, 2013).

  39. F. P. Bundy, Phys. Rev. 115, 274 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belashchenko, D.K. Computer Modeling of Sodium in the Embedded Atom Model. Russ. J. Phys. Chem. 95, 106–118 (2021). https://doi.org/10.1134/S0036024421010040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421010040

Navigation