Skip to main content
Log in

Linear Correlation between Kovats Retention Indices I and the Sum of 13C Nuclear Magnetic Resonance Chemical Shifts in the Structural Isomers of Saturated Hydrocarbons

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A linear correlation between the Kovats retention indices I and the sum of 13C nuclear magnetic resonance chemical shifts in structural isomers of saturated hydrocarbons was revealed. The equation y = ax + b was found to describe this correlation with the coefficients a and b being –1.3 and 613.8, respectively, for structural isomers of pentane; –1.8 and 836.2 for isomers of hexane; –3.0 and 1210.1 for isomers of heptane. Analysis of the dependences based on the theory of generalized charges proves the theoretical concept of additive character of the charges and points to a significant role of p electrons in the adsorption process. On the other hand, analysis of literature data shows that obtained results may be useful for the further development of the theory of generalized charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. M. Dolgonosov, Electron Gas Model and Generalized Charge Theory for Describing Interatomic Forces and Adsorption (LIBROKOM, Moscow, 2009) [in Russian].

    Google Scholar 

  2. A. M. Dolgonosov, Russ. J. Phys. Chem. A 72, 91 (1998).

    Google Scholar 

  3. A. M. Dolgonosov, Prot. Met. Phys. Chem. Surf. 51, 951 (2015).

    Article  CAS  Google Scholar 

  4. A. M. Dolgonosov, Russ. J. Phys. Chem. A 72, 1165 (1998).

    Google Scholar 

  5. A. G. Prudkovskii and A. M. Dolgonosov, J. Anal. Chem. 63, 852 (2008).

    Article  CAS  Google Scholar 

  6. V. V. Vazhev and M. K. Aldabergenov, Russ. J. Appl. Chem. 78, 453 (2005).

    Article  CAS  Google Scholar 

  7. W. K. Choi, T. I. Kwon, Y. K. Yeo, et al., Korean J. Chem. Eng. 21, 712 (2004).

    Article  Google Scholar 

  8. A. M. Dolgonosov, Dokl. Phys. Chem. 358, 26 (1998).

    Google Scholar 

  9. A. M. Dolgonosov, Russ. J. Phys. Chem. A 75, 324 (2001).

    Google Scholar 

  10. N. A. Kropotova, NovaInfo, No. 78, 1 (2018).

    Google Scholar 

  11. A. V. Kiselev, Intermolecular Interactions in Adsorption and Chromatography (Vysshaya Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  12. H. Günter, NMR Spectroscopy: An Introduction (Wiley, New York, 1980).

    Google Scholar 

  13. F. W. Wehrli and T. Wirthlin, Interpretation of Carbon- 13 NMR Spectra (Heyden, London, 1978).

    Google Scholar 

  14. K. S. Krasnov, Molecules and Chemical Bond (Vyssh. Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  15. A. N. Vereshchagin, Polarizability of Molecules (Nauka, Moscow, 1980).

    Google Scholar 

  16. D. R. Lide, Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 2004).

    Google Scholar 

  17. V. I. Minkin, The Theory of Molecular Structure (Electron Shells) (Vyssh. Shkola, Moscow, 1979) [in Russian].

    Google Scholar 

  18. B. Howard, B. Linder, and T. Merle, J. Chem. Phys. 36, 485 (1962).

    Article  CAS  Google Scholar 

  19. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy (Elsevier, Amsterdam, 1966).

    Google Scholar 

  20. N. M. Sergeev, NMR Spectroscopy (Mosk. Gos. Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  21. D. M. Grant and E. G. Paul, J. Am. Chem. Soc. 86, 2984 (1964).

    Article  CAS  Google Scholar 

  22. L. P. Lindeman and J. Q. Adams, Anal. Chem. 43, 1245 (1971).

    Article  CAS  Google Scholar 

  23. Yu. B. Vysotsky and V. S. Bryantsev, Int. J. Quantum Chem. 96, 123 (2004).

    Article  CAS  Google Scholar 

  24. V. S. Bryantsev, O. A. Gorban, and Yu. B. Vysotsky, Khim. Geterotsikl. Soedin. 12, 1451 (2002).

    Google Scholar 

  25. A. O. Vasylyev, E. A. Belyaeva, and Yu. B. Vysotsky, Nauk. Prati DonNTU, Ser.: Chem. Chem. Technol. 20, 44 (2013).

    Google Scholar 

  26. ACD/Labs. http:/www.acdlabs.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Aparkin.

Additional information

Translated by S. Efimov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aparkin, A.M., Pashinin, V.A. Linear Correlation between Kovats Retention Indices I and the Sum of 13C Nuclear Magnetic Resonance Chemical Shifts in the Structural Isomers of Saturated Hydrocarbons. Russ. J. Phys. Chem. 95, 101–105 (2021). https://doi.org/10.1134/S0036024421010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421010027

Keywords:

Navigation