Skip to main content
Log in

Nitrogen and Sulfur Quantum Dot Co-Modified Graphene Nanosheet with Enhanced Photocatalytic Activity for Methyl Orange Degradation

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Nitrogen-sulfur quantum dot co-modified graphene nanosheets composites (NSG) were fabricated via a facile hydrothermal method as a high performance metal-free catalyst for methyl orange (MO) degradation. Physical-chemical properties of the obtained samples were characterized by XRD, FTIR, SEM, TEM, EDX, TGA, BET, and UV–Vis DRS technologies. Compared with RGO, NSG exhibited much better photocatalytic performance for MO degradation under visible light, especially, NSG(30) showed the best photocatalytic degradation rate of 100% within 180 min. XRD, TG, and UV–Vis DRS results demonstrated that the addition of N and S can enhance the stability of oxygen containing functional groups to supply more adsorption active centers for organic contaminant molecular, adjust the band gap to a certain extent and increase the number of photogenerated electrons, improve the visible light utilization rate of the material and thus improve the photocatalytic degradation performance of the NSG composites. The degradation activity of the catalyst remained above 90% after 3 recycles. Finally, a possible photodegradation mechanism of MO on the obtained NSG sample was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I. Banat, R. Marchant, and W. Smyth, Appl. Microbiol. Biot. 56, 81 (2001). https://doi.org/10.1007/s002530000587

    Article  CAS  Google Scholar 

  2. F. Wang, Chem. Eng. Res. Des. 128, 155 (2017). https://doi.org/10.1016/j.cherd.2017.10.007

    Article  CAS  Google Scholar 

  3. F. Wang, J. Porous. Mater. 24, 1309 (2017). https://doi.org/10.1007/s10934-017-0372-7

    Article  CAS  Google Scholar 

  4. F. Wang and Y. Q. Ma, Mater. Chem. Phys. 208, 157 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.049

    Article  CAS  Google Scholar 

  5. A. Yang, G. Zhang, F. Meng, P. Y. Zhang, and Y. Chen, Bioresour. Technol. 253, 378 (2018). https://doi.org/10.1016/j.biortech.2018.01.034

    Article  CAS  Google Scholar 

  6. Y. Q. Zhan, X. Y. Wan, S. J. He, Q. B. Yang, and Y. He, Chem. Eng. J. 333, 132 (2018). https://doi.org/10.1016/j.cej.2017.09.147

    Article  CAS  Google Scholar 

  7. F. Wang, Chem. Eng. Res. Des. 142, 189 (2019). https://doi.org/10.1016/j.cherd.2018.12.013

    Article  CAS  Google Scholar 

  8. J. X. Yao, K. Zhang, W. Wang, X. Q. Zuo, Q. Yang, H. B. Tang, M. Z. Wu, and G. Li, ACS Appl. Mater. Interface 10, 19564 (2018). https://doi.org/10.1021/acsami.8b01240

    Article  CAS  Google Scholar 

  9. L. N. Yang, J. G. Hu, L. L. He, J. Tang, Y. Ch. Zhou, J. Li, and K. X. Ding, Chem. Eng. J. 327, 694 (2017). https://doi.org/10.1016/j.cej.2017.06.162

    Article  CAS  Google Scholar 

  10. J. Di, Ch. Chen, Ch. Zhu, M. X. Ji, J. X. Xia, Yan Cheng, W. Hao, Sh. Zh. Li, H. M. Li, and Zh. Liu, Appl. Catal., B: Environ. 238, 119 (2018). https://doi.org/10.1016/j.apcatb.2018.06.066

    Article  CAS  Google Scholar 

  11. S. Shanmuganathan, P. Loganathan, M. A. H. Johir, and S. Vigneswaran, Desalination 401, 134 (2016). https://doi.org/10.1111/j.1749-6632.1986.tb47973.x

    Article  Google Scholar 

  12. Y. Q. Liao, Y. L. Huang, D. Shu, Y. Y. Zhong, J. N. Hao, Ch. He, J. Zhong, and X. N. Song, Electrochim. Acta 194, 136 (2016). https://doi.org/10.1016/j.electacta.2016.02.067

    Article  CAS  Google Scholar 

  13. Zhao, Sh. Sh, T. T. Yan, H. Wang, G. R. Chen, L. Huang, J. P. Zhang, L. Y. Shi, and D. S. Zhang, Appl. Surf. Sci. 36, 460 (2016). https://doi.org/10.1016/j.apsusc.2016.02.085

    Article  CAS  Google Scholar 

  14. J. Zhou, H. L. Shen, Zh. H. Li, Sh. Zhang, Y. T. Zhao, X. Bi, Y. Sh. Wang, H. Y. Cui, and Sh. P. Zhuo, Electrochim. Acta 209, 557 (2016). https://doi.org/10.1016/j.electacta.2016.05.127

    Article  CAS  Google Scholar 

  15. D. Hadis and N. E. Alireza, J. Colloid Interface Sci. 490, 628 (2017). https://doi.org/10.1016/j.jcis.2016.11.102

    Article  CAS  Google Scholar 

  16. J. M. Yang, B. Ch. Yang, and Y. Zhang, Microporous Mesoporous Mater. 292, 109764 (2020). https://doi.org/10.1016/j.micromeso.2019.109764

    Article  CAS  Google Scholar 

  17. J. Y. Zhang, D. Xu, W. J. Qian, J. Y. Zhu, and F. Yan, Carbon 105, 183 (2016). https://doi.org/10.1016/j.carbon.2016.04.034

    Article  CAS  Google Scholar 

  18. W. Zh. Chen, J. J. Shi, T. Sh. Zhu, Q. Wang, J. L. Qiao, and J. J. Zhang, Electrochim. Acta 17, 327 (2015). https://doi.org/10.1016/j.electacta.2015.01.093

    Article  CAS  Google Scholar 

  19. J. H. Li, G. P. Zhang, Ch. P. Fu, L. B. Deng, R. Sun, and Ch. P. Wong, J. Power Sources 345, 146 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.011

    Article  CAS  Google Scholar 

  20. M. Shah, A. R. Park, K. Zhang, J. H. Park, and P. J. Yoo, ACS Appl. Mater. Interface 4, 3893 (2012). https://doi.org/10.1021/am301287m

    Article  CAS  Google Scholar 

  21. V. V. Walatka, Jr., M. M. Labes, and J. H. Perlstein, Phys. Rev. Lett. 31, 1139 (1973). https://doi.org/10.1103/PhysRevLett.31.1139

    Article  CAS  Google Scholar 

  22. F. Wang, J. Porous Mater. 24, 1309 (2017). https://doi.org/10.1007/s10934-017-0372-7

    Article  CAS  Google Scholar 

  23. L. Chen, L. Song, Y. Zhang, P. Wang, Z. Xiao, Y. Guo, and F. Cao, ACS Appl. Mater. Interface 8, 11255 (2016). https://doi.org/10.1021/acsami.6b01030

    Article  CAS  Google Scholar 

  24. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, and D. Zhu, J. Colloid Interface Sci. 349, 293 (2010). https://doi.org/10.1016/j.jcis.2010.05.010

    Article  CAS  Google Scholar 

  25. X. Zh. Guo, Sh. Sh. Han, J. M. Yang, et al., Ind. Eng. Chem. Res. 59, 2113 (2020). https://doi.org/10.1021/acs.iecr.9b05715

    Article  CAS  Google Scholar 

  26. W. Zhang, R. Zh. Zhang, Y. Yin, et al., J. Mol. Liq. 302, 112616 (2020).

    Article  CAS  Google Scholar 

  27. S. Kimiagar and F. Abrinaei, Nanophotonics 7, 243 (2018). https://doi.org/10.1080/19443994.2016.1183233

    Article  CAS  Google Scholar 

  28. S. Gao, H. Liu, K. Geng, and X. J. Wei, Nano Energy 12, 785 (2015). https://doi.org/10.1016/j.nanoen.2015.02.004

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Shandong Natural Science Foundation of China (ZR2018QB007), Key R&D Program Projects in Shandong Province (2019GSF109117), a project of Shandong Province Higher Educational Science and Technology Program (J14LC54), a project of Binzhou City science and technology development project (2014ZC0212), and Binzhou University (BZXYHZ20161010, BZXYG1607, and BZXYL1801) research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang Wang, Zhang, H. & Xu, B. Nitrogen and Sulfur Quantum Dot Co-Modified Graphene Nanosheet with Enhanced Photocatalytic Activity for Methyl Orange Degradation. Russ. J. Phys. Chem. 94, 2299–2305 (2020). https://doi.org/10.1134/S0036024420110333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420110333

Keywords:

Navigation