Skip to main content
Log in

A Promising Material for Selective Sensing Biomarker Gas Molecules

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The interaction of many biomarker gas molecules on pure, AlB-doped and GaB-doped boron nitride nanotube was studied by the density functional theory method at the B3LYP/6-31+G(d) level of theory. Dimethylamine, carbon disulfide, acetone, dimethyl sulfide, hydrogen peroxide and formaldehyde were the studied gas molecules. The interaction has been studied from every possible side of the gas molecules. Dimethylamine and hydrogen peroxide are the gas molecules which adsorbed on the pure BN nanotube. All the gas molecules adsorbed on AlB-doped and GaB-doped BN nanotube except carbon disulfide. All the observed adsorption for the studied gas molecules was exothermic. The configurations of the gas molecules and nanotubes before and after adsorption, and also, the electronic and thermodynamic properties of the adsorptions were reported. So, we can consider the AlB-doped and GaB-doped BN nanotube as the promising material for sensing the biomarker gas molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Wasilewski, J. Gębicki, and W. Kamysz, Biosens. Bioelectron. 87, 480 (2017).

    Article  CAS  Google Scholar 

  2. J. P. Spinhirne, J. A. Koziel, and N. K. Chirase, Biosyst. Eng. 84, 239 (2003).

    Article  Google Scholar 

  3. A. W. Boots, J. J. van Berkel, J. W. Dallinga, A. Smolinska, E. F. Wouters, and F. J. van Schooten, J. Breath Res. 6, 027108 (2012).

  4. M. Hakim, S. Billan, U. Tisch, G. Peng, I. Dvrokind, O. Marom, et al., Brit. J. Cancer. 104, 1649 (2011).

    Article  CAS  Google Scholar 

  5. G. Shuster, Z. Gallimidi, A. H. Reiss, E. Dovgolevsky, S. Billan, R. Abdah-Bortnyak, et al., Breast Cancer Res. Treat. 126, 791 (2011).

    Article  Google Scholar 

  6. B. Buszewski, M. Kęsy, T. Ligor, and A. Amann, Biomed. Chromatogr. 21, 553 (2007).

    Article  CAS  Google Scholar 

  7. Y. Teng, P. Sun, J. Zhang, R. Yu, J. Bai, X. Yao, et al., CHEST 140, 108 (2011).

  8. C. M. Benton, C. K. Lim, C. Moniz, and D. J. L. Jones, Biomed. Chromatogr. 27, 1782 (2013).

    Article  CAS  Google Scholar 

  9. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, et al., Nat. Nanotechnol. 4, 669 (2009).

    Article  CAS  Google Scholar 

  10. W. Miekisch, J. K. Schubert, and G. F. E. Noeldge-Schomburg, Clin. Chim. Acta 347, 25 (2004).

    Article  CAS  Google Scholar 

  11. J. M. Peter, J. Breath Res. 6, 027106 (2012).

    Article  Google Scholar 

  12. M. Nishibori, W. Shin, N. Izu, T. Itoh, and I. Matsubara, Sens. Actuators, B 137, 524 (2009).

    Article  CAS  Google Scholar 

  13. P. D’Orazio, Clin. Chim. Acta 334, 41 (2003).

    Article  Google Scholar 

  14. I. E. Tothill, Seminars Cell Develop. Biol. 20, 55 (2009).

    Article  CAS  Google Scholar 

  15. C. I. L. Justino, A. C. Duarte, and T. A. Rocha-Santos, Trends Anal. Chem. 29, 1172 (2010).

    Article  CAS  Google Scholar 

  16. V. Nagarajan and R. Chandiramouli, J. Mol. Graph. Modell. 73, 208 (2017).

    Article  CAS  Google Scholar 

  17. P. Singla, M. Riyaz, S. Singhal, and N. Goel, Phys. Chem. Chem. Phys. 18, 5597 (2016).

    Article  CAS  Google Scholar 

  18. S. C. Barman, M. F. Hossain, H. Yoon, and J. Y. Park, Biosens. Bioelectron. 100, 16 (2018).

    Article  CAS  Google Scholar 

  19. J. Tamayo, P. M. Kosaka, J. J. Ruz, San A. Paulo, and M. Calleja, Chem. Soc. Rev. 42, 1287 (2013).

    Article  CAS  Google Scholar 

  20. V. Nagarajan, A. Bhattacharyya, and R. Chandiramouli, J. Mol. Graph. Model. 79, 149 (2018).

    Article  CAS  Google Scholar 

  21. Y.-Q. Zhang, Y.-J. Liu, Y.-L. Liu, and J.-X. Zhao, J. Mol. Graph. Model. 51, 1 (2014).

    Article  Google Scholar 

  22. M. Riyaz, S. Yadav, and N. Goel, J. Mol. Graph. Model. 79, 27 (2018).

    Article  CAS  Google Scholar 

  23. L. W. Tack, M. A. Azam, and R. N. A. R. Seman, J. Phys. Chem. A 121, 2636 (2017).

    Article  CAS  Google Scholar 

  24. M. A. Azam, F. M. Alias, L. W. Tack, R. N. A. R. Seman, and M. F. M. Taib, J. Mol. Graph. Model. 75, 85 (2017).

    Article  CAS  Google Scholar 

  25. E. Chigo Anota and G. H. Cocoletzi, J. Mol. Graph. Model. 42, 115 (2013).

    Article  CAS  Google Scholar 

  26. J. Kaur, S. Singhal, and N. Goel, Superlatt. Microstruct. 75, 445 (2014).

    Article  CAS  Google Scholar 

  27. E. Shakerzadeh and S. Noorizadeh, Phys. E (Amsterdam, Neth.) 57, 47 (2014).

  28. M. B. Panchal, Biosens. J. 4, 118 (2015).

    Google Scholar 

  29. D. Golberg, Y. Bando, C. C. Tang, and C. Y. Zhi, Adv. Mater. 19, 2413 (2007).

    Article  CAS  Google Scholar 

  30. C. Zhi, Y. Bando, C. Tang, and D. Golberg, Mater. Sci. Eng. R 70, 92 (2010).

    Article  Google Scholar 

  31. E. C. Anota, A. B. Hernández, A. E. Morales, and M. Castro, J. Mol. Graph. Model. 74, 135 (2017).

    Article  CAS  Google Scholar 

  32. C. Tang, Y. Bo, Y. Huang, S. Yue, C. Gu, F. Xu, et al., J. Am. Chem. Soc. 127, 6552 (2005).

    Article  CAS  Google Scholar 

  33. Y. Chen, X.-C. Yang, Y.-J. Liu, J.-X. Zhao, Q.-H. Cai, and X.-Z. Wang, J. Mol. Graph. Model. 39, 126 (2013).

    Article  CAS  Google Scholar 

  34. J. Y. Zhao, F. Q. Zhao, S. Y. Xu, and X. H. Ju, J. Mol. Graph. Model. 48, 9 (2014).

    Article  CAS  Google Scholar 

  35. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  36. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem. 29, 839 (2008).

    Article  Google Scholar 

  37. A. Soltani, M. T. Baei, A. S. Ghasemi, E. Tazikeh Lemeski, and K. H. Amirabadi, Superlatt. Microstruct. 75, 564 (2014).

    Article  CAS  Google Scholar 

  38. H. Heidari, S. Afshari, and E. Habibi, RSC Adv. 5, 94201 (2015).

Download references

Funding

This work was supported by Damghan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Afshari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameneh Izadi, Masoumi, S., Sadegh Afshari et al. A Promising Material for Selective Sensing Biomarker Gas Molecules. Russ. J. Phys. Chem. 94, 158–166 (2020). https://doi.org/10.1134/S003602442001029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442001029X

Keywords:

Navigation