Skip to main content
Log in

Reverse Micelle Surfactant System Comprising the 1-decanoyl-rac-glycerol and the Lauryldimethylamine-N-oxide: Structure and Dynamics of Confined Water

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A mixture of two surfactants 1-decanoyl-rac-glycerol (MAG) and lauryldimethylamine-N-oxide (LDA) in pentane solvent was investigated by molecular dynamics simulation. The simulation was carried out in the presence and absence of flavodoxin protein. In each of the simulations, hexanol was used as a co-solvent. Water molecules were added to the mixtures to adapt to experimental conditions. The ratio of surfactants, solvent and water were selected according to experimental data. The moments of inertia and the radius of gyration of micelles were calculated and the results indicated that the protein caused the micelles dimensions to be smaller. Also, the protein has reduced the number of hydrogen bonds between the water molecules confined in the reverse micelles core, while the strength of these bonds increases. Calculating the diffusion coefficient also indicates that the flavodoxin reduces the mobility of water molecules. In the presence of 5 hexanol molecules, micelle retains its structure in the presence of flavodoxin and is oblate ellipsoid. Increasing the number of hexanol to 10, has caused the geometric shape of the reverse micelle to change in the presence and absence of flavodoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. M. Kielec, K. G. Valentine, and A. J. Wand, Biochim. Biophys. Acta 1798, 150 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. K. Pervushin, R. Riek, G. Wider, and K. Wüthrich, Proc. Natl. Acad. Sci. 94, 12366 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Maitra, J. Phys. Chem. 88, 5122 (1984).

    Article  CAS  Google Scholar 

  4. N. V. Nucci, K. G. Valentine, and A. J. Wand, J. Magn. Reson. 241, 137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. W. Peterson, B. G. Lefebvre, and A. J. Wand, J. Am. Chem. Soc. 127, 10176 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B. G. Lefebvre, W. Liu, R. W. Peterson, K. G. Valentine, and A. J. Wand, J. Magn. Reson. 175, 158 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. P. L. Luisi, Angew. Chem. Int. Ed. 24, 439 (1985).

    Article  Google Scholar 

  8. H. Workman and P. F. Flynn, J. Am. Chem. Soc. 131, 3806 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. C. R. Babu, V. J. Hilser, and A. J. Wand, Nat. Struct. Mol. Biol. 11, 352 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. M. S. Pometun, R. W. Peterson, C. R. Babu, and A. J. Wand, J. Am. Chem. Soc. 128, 10652 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K. G. Valentine, R. W. Peterson, J. S. Saad, M. F. Summers, X. Xu, J. B. Ames, and A. J. Wand, Structure 18, 9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. I. Dodevski, N. V. Nucci, K. G. Valentine, G. K. Sidhu, E. S. O’Brien, A. Pardi, and A. J. Wand, J. Am. Chem. Soc. 136, 3465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. W. Peterson, M. S. Pometun, Z. Shi, and A. J. Wand, Protein Sci. 14, 2919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Doussin, N. Birlirakis, D. Georgin, F. Taran, and P. Berthault, Chem.-Eur. J. 12, 4170 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. A. V. Martinez, S. C. DeSensi, L. Dominguez, E. Rivera, and J. E. Straub, J. Chem. Phys. 134, 02B610 (2011).

  16. A. Lostao, F. Daoudi, M. P. Irún, A. Ramón, C. Fernández-Cabrera, A. Romero, and J. Sancho, J. Biol. Chem. 278, 24053 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, J. Comput. Chem. 26, 1701 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, and S. Su, J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  19. V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, J. Comput. Chem. 32, 2359 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. D. J. Price and C. L. Brooks III, J. Chem. Phys. 121, 10096 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, J. Comput. Chem. 18, 1463 (1997).

    Article  CAS  Google Scholar 

  23. S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).

    Article  CAS  Google Scholar 

  24. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).

    Article  CAS  Google Scholar 

  25. D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming (Springer, Berlin, Heidelberg, 1984), Vol. 2.

    Google Scholar 

  26. B. Honarparvar and A. A. Skelton, J. Mol. Model. 21, 100 (2015). https://doi.org/10.1007/s00894-015-2645-x

    Article  CAS  PubMed  Google Scholar 

  27. D. Brune and S. Kim, Proc. Natl. Acad. Sci. 90, 3835 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Elsevier, Amsterdam, 2001), Vol. 1.

    Google Scholar 

  29. C. Y. Won and N. Aluru, J. Phys. Chem. C 112, 1812 (2008).

    Article  CAS  Google Scholar 

  30. J. Mittal and G. Hummer, Proc. Natl. Acad. Sci. 105, 20130 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Bozorgmehr.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnaz Bazaziyan, Bozorgmehr, M.R., Momen-Heravi, M. et al. Reverse Micelle Surfactant System Comprising the 1-decanoyl-rac-glycerol and the Lauryldimethylamine-N-oxide: Structure and Dynamics of Confined Water. Russ. J. Phys. Chem. 93, 1122–1127 (2019). https://doi.org/10.1134/S0036024419060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419060050

Keywords:

Navigation