Skip to main content
Log in

Purity of MgH2 Improved by the Process of Pre-milling Assisted Hydriding of Mg Powder under a Hydrogen Pressure of 0.5 MPa

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Magnesium hydride (MgH2) is a very promising hydrogen storage material due to its high hydrogen storage capacity (7.6 wt %) and low cost. It has been paid increasing attention as it may be employed in supplying hydrogen on-board. However, the production of MgH2 in high purity is still a challenging issue because the process requires high pressure and prolonged time. In this paper, high purity of MgH2 was achieved by the process of pre-milling assisted hydriding of Mg powder under a hydrogen pressure as low as 0.5 MPa. The effects of hydrogen pressure as well as hydriding and mechanical milling parameters, such as ball-to-powder ratio and milling time were investigated systematically. The relationship between the morphologies and the purities of products were discussed in detail. Our results revealed that MgH2 purity of 94.19 wt % can be achieved by hydriding with heating up to 853 K followed by cooling down to 593 K and keeping this temperature for 5 h after the milling pretreatment of Mg powder, at 400 rpm milling speed, 20 : 1 ball-to-powder ratio and 40 min milling time. SEM observation of the morphology of products indicated the achievement of the purity of MgH2 under a hydrogen pressure as low as 0.5 MPa was related to the structural defects and activation of Mg powders caused by the mechanical milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. I. P. Jain, C. Lal, and A. Jain, Int. J. Hydrogen Energy 35, 5133 (2010).

    Article  CAS  Google Scholar 

  2. L. Schlapbach and A. Züttel, Nature (London, U.K.) 414, 353 (2001).

    Article  CAS  Google Scholar 

  3. E. S. Kikkinides, Comput. Chem. Eng. 35, 1923 (2011).

    Article  CAS  Google Scholar 

  4. S. S. Muir and X. Yao, Int. J. Hydrogen Energy 36, 5983 (2011).

    Article  CAS  Google Scholar 

  5. E. I. Shkolnikov, A. Z. Zhuk, and M. S. Vlaskin, Renewable Sustainable Energy Rev. 15, 4611 (2011).

    Article  CAS  Google Scholar 

  6. Y. F. Liu, Y. X. Yang, M. X. Gao, et al., Chem. Rec. 16, 189 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. P. Jena, J. Phys. Chem. Lett. 2, 206 (2011).

    Article  CAS  Google Scholar 

  8. H. Fu, Y. Wu, J. Chen, et al., Inorg. Chem. Front. 3, 1137 (2016).

    Article  CAS  Google Scholar 

  9. J. O. Bockris, Int. J. Hydrogen Energy 28, 131 (2003).

    Article  Google Scholar 

  10. E. Y. Marreroalfonso, A. M. Beaird, T. A. Davis, et al., Ind. Eng. Chem. Res. 48, 3703 (2009).

    Article  CAS  Google Scholar 

  11. T. Tayeh, A. S. Awad, M. Nakhl, et al., Int. J. Hydrogen Energy 39, 3109 (2014).

    Article  CAS  Google Scholar 

  12. Y. L. Zhou, Y. Lu, Y. F. Zhu, et al., Rare Met. 33, 37 (2014).

    Article  CAS  Google Scholar 

  13. J. Chen, H. Fu, Y. F. Xiong, et al., Nano Energy 10, 337 (2014).

    Article  CAS  Google Scholar 

  14. S. Hiroi, S. Hosokai, and T. Akiyama, Fuel Energy Abstracts 36, 1442 (2011).

    CAS  Google Scholar 

  15. H. Zhong, H. Wang, J. W. Liu, et al., J. Alloys. Compd. 680, 419 (2016).

    Article  CAS  Google Scholar 

  16. Z. L. Zhao, Y. F. Zhu, and L. Q. Li, Chem. Commun. 48, 5509 (2012).

    Article  CAS  Google Scholar 

  17. H. Uesugi, T Sugiyama, H. Nii, et al., J. Alloys Compd. 509, S650 (2011).

    Article  CAS  Google Scholar 

  18. Y. A. Liu, X. H. Wang, Z. H. Dong, et al., Energy 53, 147 (2013).

    Article  CAS  Google Scholar 

  19. M. L. Tan, Z. J. Tan, and G. F. Quan, Adv. Mater. Chem. 03, 53 (2015).

    Article  CAS  Google Scholar 

  20. L. J. Li, J. X. Zou, X. Q. Zeng, et al., Rare Met. Mater. Eng. 42, 1445 (2013).

    Article  CAS  Google Scholar 

  21. Q. Yu, L. Qi, R. K. Mishra, et al., Appl. Phys. Lett. 106, 157 (2015).

    Google Scholar 

  22. J. Cui, H. Wang, D. L. Sun, et al., Rare Met. 35, 1 (2014).

    Google Scholar 

  23. K. F. Aguey-Zinsou and J. R. Ares-Fernández, Energy Environ. Sci. 3, 526 (2010).

    Article  CAS  Google Scholar 

  24. H. Wang, H. J. Lin, W. T. Cai, et al., J. Alloys. Compd. 658, 280 (2016).

    Article  CAS  Google Scholar 

  25. P. Chen and M. Zhu, Mater. Today 11, 36 (2008).

    Article  Google Scholar 

  26. J. Huot, G. Liang, S. Boily, et al., J. Alloys. Compd. 293, 495 (1999).

    Article  Google Scholar 

  27. A. Zaluska, L. Zaluski, and J. O. Ström–Olsen, J. Alloys. Compd. 288, 217 (1999).

    Article  CAS  Google Scholar 

  28. D. M. Liu, Y. F. Zhu, and L. Q. Li, Int. J. Hydrogen Energy 32, 2417 (2007).

    Article  CAS  Google Scholar 

  29. H. Gu, Y. F. Zhu, and L. Q. Li, J. Alloys Compd. 112, 218 (2008).

    CAS  Google Scholar 

  30. J. Yuan, Y. Zhu, L. Ying, et al., Int. J. Hydrogen Energy 39, 10184 (2014).

    Article  CAS  Google Scholar 

  31. Y. J. Tan, Y. F. Zhu, and L. Q. Li, Chem. Commun. 51, 2368 (2014).

    Article  CAS  Google Scholar 

  32. L. Q. Li, T. Akiyama, and J. I. Yagi, Intermetallics 7, 201 (1999).

    Article  CAS  Google Scholar 

  33. J. G. Zhang, Y. F. Zhu, X. X. Zang, et al., J. Mater. Chem. A 4, 2560 (2016).

    Article  CAS  Google Scholar 

  34. S. Li, D. Y. Gan, Y. F. Zhu, et al., T. Nonferr. Metal. Soc. 27, 562 (2017)

    Article  CAS  Google Scholar 

  35. B. Bogdanovi, A. Ritter, and B. Spliethoff, Angew. Chem. Int. Ed. 29, 223 (1990).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (NSFC, grant nos. 51571112, 51471087, 51601090), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant no. 13KJA430003), the Natural Science Foundation of Jiangsu Province (BK20151405, BK20161004), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfeng Zhu or Liquan Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deyu Gan, Zhang, J., Liu, Y. et al. Purity of MgH2 Improved by the Process of Pre-milling Assisted Hydriding of Mg Powder under a Hydrogen Pressure of 0.5 MPa. Russ. J. Phys. Chem. 93, 665–673 (2019). https://doi.org/10.1134/S0036024419040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419040101

Keywords:

Navigation