Skip to main content
Log in

Structural, optical, and catalytic properties of undoped and CdS doped CuO–ZnO nanoparticles

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The structural, optical and catalytic properties of undoped (CuO–ZnO) and CdS doped CuO–ZnO (CdS/CuO–ZnO) nanoparticles were studied. The blue shifting of optical band gap in CuO–ZnO nanoparticles as compared to their respective bulk oxides (CuO: 1.21–1.5 eV, ZnO: 3.37 eV) was observed as 3.9 eV, while red shifting after doping of CdS was found from 3.9 to 3.7 eV. The angle of diffraction and FWHM values were used to observe crystallite phase and to calculate crystallite size (using Scherer and Williamson–Hall equations) and other parameters like strain, dislocation density and bond length of nanoparticles. The particle size of CuO–ZnO and CdS/CuO–ZnO nanoparticles using transmission electron microscopy (TEM) was found 12.54 and 6.93 nm, respectively. It was concluded that decrease in particle size cause red shifting which increase the catalytic efficiency of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ma, S. Wang, and L. Wang, Trends Anal. Chem. 65, 13 (2015).

    Article  CAS  Google Scholar 

  2. S. Javaid, M. A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, and A. A. Umar, Superlatt. Microstruct. 82, 234 (2015).

    Article  CAS  Google Scholar 

  3. M. Shahid, M. A. Farrukh, A. A. Umar, and M. Khaleeq-ur-Rahman, Russ. J. Phys. Chem. A 88, 836 (2014).

    Article  CAS  Google Scholar 

  4. C. H. Moore, O. Pustovyy, J. C. Dennis, T. Moore, E. E. Morrison, and V. J. Vodyanoy, Talanta 88, 730 (2012).

    Article  CAS  Google Scholar 

  5. D. Garcia-Romeo, I. Pellejero, M. A. Urbiztondo, J. Sese, M. P. Pina, P. A. Martinez, B. Calvo, and N. Medrano, Sens. Actuators B: Chem. 200, 31 (2014).

    Article  CAS  Google Scholar 

  6. A. S. M. Mahmoudi, M. Imani, and U. O. Häfeli, J. Phys. Chem. C 113, 8124 (2009).

    Article  CAS  Google Scholar 

  7. S. Ali, M. A. Farrukh, and M. Khaleeq-ur-Rahman, Korean J. Chem. Eng. 30, 2100 (2013).

    Article  CAS  Google Scholar 

  8. V. Bhalla, X. Zhao, and V. Zazubovich, J. Electroanal. Chem. 657, 84 (2011).

    Article  CAS  Google Scholar 

  9. M. Boujtita, Nanosensors for Chemical and Biological Applications (Woodhead, UK, 2014).

    Google Scholar 

  10. Q. Lian, X. F. Zheng, and H. Yang, Russ. J. Phys. Chem. A 89, 1891 (2015).

    Article  CAS  Google Scholar 

  11. E. Bae, B. C. Lee, Y. Kim, and K. Choi, Korean J. Chem. Eng. 30, 364 (2013).

    Article  CAS  Google Scholar 

  12. S. S. Lin, D. J. Chang, C. H. Wang, and C. C. Chen, Water Res. 37, 793 (2003).

    Article  CAS  Google Scholar 

  13. F. K. Alanazi, A. A. Radwan, and I. A. Alsarra, Saudi Pharma. J. 18, 179 (2010).

    Article  CAS  Google Scholar 

  14. T. Zhang, D. Li, Z. Tao, and J. Chen, Prog. Nat. Sci.: Mater. Int. 23, 256 (2013).

    Article  CAS  Google Scholar 

  15. S. R. Mudshinge, A. B. Deore, S. Patil, and C. M. Bhalgat, Saudi Pharma. J. 19, 129 (2011).

    Article  CAS  Google Scholar 

  16. I. J. Joye, G. Davidov-Pardo, and D. J. McClements, Encyclopedia of Food and Health (Academic, Oxford, 2016).

    Google Scholar 

  17. A. Arshad, M. A. Farrukh, S. Ali, M. Khaleeq-ur-Rahman, and M. A. Tahir, J. Forensic Sci. 60, 1182 (2015).

    Article  CAS  Google Scholar 

  18. M. A. Farrukh and F. Naseem, US Patent No. 8911526 B2 (2014).

    Google Scholar 

  19. R. Liu and R. Lal, Sci. Total Environ. 514, 131 (2015).

    Article  CAS  Google Scholar 

  20. I. Muneer, M. A. Farrukh, S. Javaid, M. Shahid, and M. Khaleeq-ur-Rahman, Superlatt. Microstruct. 77, 256 (2015).

    Article  CAS  Google Scholar 

  21. G. Dan, X. Guoxin, and L. Jianbin, J. Phys. D: Appl. Phys. 47, 013001 (2014).

    Article  Google Scholar 

  22. N. Venugopal, W. S. Kim, and T. Yu, Korean J. Chem. Eng. 33, 1500 (2016).

    Article  CAS  Google Scholar 

  23. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A. C. Bose, Solid State Commun. 149, 1919 (2009).

    Article  CAS  Google Scholar 

  24. P. E. Lippens and M. Lannoo, Phys. Rev. B 39, 10935 (1989).

    Article  CAS  Google Scholar 

  25. Y. Im, S. Kang, B. S. Kwak, K. S. Park, T. W. Cho, J. S. Lee, and M. Kang, Korean J. Chem. Eng. 33, 1447 (2016).

    Article  CAS  Google Scholar 

  26. M. A. Farrukh, C. K. Thong, R. Adnan, and M. A. Kamarulzaman, Russ. J. Phys. Chem. A 86, 2041 (2012).

    Article  CAS  Google Scholar 

  27. E. D. Sherly, J. J. Vijaya, L. J. Kennedy, A. Meenakshisundaram, and M. Lavanya, Korean J. Chem. Eng. 33, 1431 (2016).

    Article  CAS  Google Scholar 

  28. J. Qu, Y. Zhu, Z. Cheu, N. Yuan, and J. Ding, Russ. J. Phys. Chem. A 90, 1621 (2016).

    Article  CAS  Google Scholar 

  29. G. V. Belkova, S. A. Zavyalov, N. N. Glagolev, and A. B. Soloveva, Russ. J. Phys. Chem. A 84, 129 (2010)

    Article  CAS  Google Scholar 

  30. A. A. Vasiliev and V. V. Malyshev, Sens. Actuators B: Chem. 189, 260 (2013).

    Article  CAS  Google Scholar 

  31. M. Gaudon, O. Toulemonde, and A. Demourgues, Inorg. Chem. 46, 10996 (2007).

    Article  CAS  Google Scholar 

  32. H. Yazid, R. Adnan, S. A. Hamid, and M. A. Farrukh, Turk. J. Chem. 34, 639 (2010).

    CAS  Google Scholar 

  33. X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, and C. Li, J. Phys. Chem. C 114, 1963 (2010).

    Article  CAS  Google Scholar 

  34. N. M. Osipyonok, A. F. Singaevsky, Y. V. Noskov, Y. P. Piryatinski, P. S. Smertenko, O. P. Dimitriev, and A. A. Pud, Mater. Sci. Eng. B 147, 254 (2008).

    Article  CAS  Google Scholar 

  35. H. Cortina, C. Martinez-Alonso, M. Castillo-Ortega, and H. Hu, Mater. Sci. Eng. B 177, 1491 (2012).

    Article  CAS  Google Scholar 

  36. S. G. Prasad, Int. J. Spectrosc. 7, 1 (2011).

    Article  CAS  Google Scholar 

  37. M. A. Farrukh and T. Naseem, J. Chem. 2015, 7 (2015).

    Google Scholar 

  38. P. Kumar, H. K. Malik, A. Ghosh, R. Thangavel, and K. Asokan, Appl. Phys. Lett. 102, 221903 (2013).

    Article  Google Scholar 

  39. K. Ravichandrika, P. Kiranmayi, and R. Ravikumar, Int. J. Pharm. Pharma. Sci. 4, 336 (2012).

    CAS  Google Scholar 

  40. M. Kooti and L. Matouri, Trans. F. Nanotech. 17, 73 (2010).

    CAS  Google Scholar 

  41. M. N. Borovaya, A. P. Naumenko, N. A. Matvieieva, Y. B. Blume, and A. I. Yemets, Nanoscale Res. Lett. 9, 686 (2014).

    Article  Google Scholar 

  42. J. Albertsson, S. C. Abrahams, and A. Kvick, Acta Crystallogr., Sect. B 45, 34 (1989).

    Article  Google Scholar 

  43. M. T. S. Nair, L. Guerrero, O. L. Arenas, and P. K. Nair, Appl. Surf. Sci. 150, 143 (1999).

    Article  CAS  Google Scholar 

  44. H. L. Chen, T. H. Chiang, and M. C. Wu, J. Surf. Eng. Mater. Adv. Technol. 2, 06 (2012).

    Google Scholar 

  45. T. Suzuki, T. Yagi, S. I. Akimoto, T. Kawamura, S. Toyoda, and S. Endo, J. Appl. Phys. 54, 748 (1983).

    Article  CAS  Google Scholar 

  46. P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014).

    Article  Google Scholar 

  47. V. T. Nguyen and B. Gatzhammer, Int. J. Impact. Eng. 80, 65 (2015).

    Article  Google Scholar 

  48. B. N. Reinhard and I. K. Vladimir, J. Phys.: Condens. Matter 17, 125 (2005).

    Google Scholar 

  49. M. Nafees, W. Liaqut, S. Ali, and M. Shafique, Appl. Nanosci. 3, 49 (2013).

    Article  CAS  Google Scholar 

  50. A. Asthana, K. Momeni, A. Prasad, Y. K. Yap, and R. S. Yassar, Appl. Phys. A 105, 909 (2011).

    Article  CAS  Google Scholar 

  51. K. Kannaki, P. S. Ramesh, and D. Geeta, Int. J. Sci. Eng. Res. 3, 1 (2012).

    Google Scholar 

  52. H. Lin, C. P. Huang, W. Li, C. Ni, S. I. Shah, and Y. H. Tseng, Appl. Catal. B: Environ. 68, 1 (2006).

    Article  CAS  Google Scholar 

  53. A. Imtiaz, M. A. Farrukh, M. Khaleeq-ur-rahman, and R. Adnan, Sci. World J. 2013, 11 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younas, N., Farrukh, M.A., Ali, S. et al. Structural, optical, and catalytic properties of undoped and CdS doped CuO–ZnO nanoparticles. Russ. J. Phys. Chem. 91, 2201–2207 (2017). https://doi.org/10.1134/S0036024417110152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417110152

Keywords

Navigation