Skip to main content
Log in

Analysis of Van der Waals interactions between nanoparticles with different geometries, with accounting for three-particle contributions to the total energy

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The Axilrod–Teller–Muto method with corrections for triple interactions is used to calculate the energies of Van der Waals interaction for nanosystems containing particles with different geometries. Results are presented for symmetric systems with identical cubic particles of different sizes, for film and cubic particle systems, and for the systems with differently oriented nanorods. Boundary and particle arrangement effects are studied. The fundamental importance of allowing for nonadditive contributions to obtain a reliable quantitative description of interaction processes inside nanosystems is demonstrated. The results are compared to ones obtained using analytical macroscopic methods and the limits of the applicability of macroscopic approximations are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  2. Yu. S. Barash and V. L. Ginzburg, Sov. Phys. Usp. 18, 308 (1975).

    Article  Google Scholar 

  3. H. Kim, J. Sofo, D. Velegol, et al., J. Chem. Phys. 125, 174303 (2006).

    Article  Google Scholar 

  4. A. Donchev, J. Chem. Phys. 125, 074713 (2006).

    Article  CAS  Google Scholar 

  5. Y. V. Shtogan and L. M. Woods, J. Phys. Chem. Lett. 1, 1356 (2010).

    Article  Google Scholar 

  6. V. Yannopapas, J. Phys. Chem. C 117, 15342 (2014).

  7. C. Vannozzi, Soft Matter 8, 5214 (2012).

    Article  CAS  Google Scholar 

  8. B. W. Kwaadgras, M. W. Verddult, M. Dijkstra, et al., J. Chem. Phys. 138, 104308 (2013).

    Article  Google Scholar 

  9. K. A. Emelyanenko, A. M. Emelyanenko, and L. Boinovich, Chem. Lett. 41, 1253 (2012).

    Article  CAS  Google Scholar 

  10. R. S. Bradley, Philos. Mag. 13, 301 (1932).

    Article  Google Scholar 

  11. H. C. Hamaker, Physica 4, 1058 (1937).

    Article  CAS  Google Scholar 

  12. E. M. Lifshits, Sov. Phys. JETP 2, 73 (1956).

    CAS  Google Scholar 

  13. D. Langbein, J. Phys. Chem. Solids 32, 133 (1971).

  14. N. G. van Kampen, B. R. A. Nijboer, and K. Schram, Phys. Lett. A 26, 307 (1968).

    Article  Google Scholar 

  15. R. Podgornik and V. A. Parsegian, J. Chem. Phys. 120, 3401 (2004).

    Article  CAS  Google Scholar 

  16. R. Podgornik, R. H. French, and V. A. Parsegian, J. Chem. Phys. 124, 044709 (2006).

    Article  CAS  Google Scholar 

  17. J. Mahanty and B. W. Ninham, Dispersion Forces (Academic, London, 1976).

    Google Scholar 

  18. V. A. Parsegian, Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ. Press, Cambridge, 2006).

    Google Scholar 

  19. L. B. Boinovich, Russ. Chem. Rev. 76, 471 (2007).

    Article  CAS  Google Scholar 

  20. F. London, Z. Phys. 63, 245 (1930).

    Article  CAS  Google Scholar 

  21. F. London, Z. Phys. Chem. B 11, 222 (1930).

    CAS  Google Scholar 

  22. H. G. B. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

    Article  CAS  Google Scholar 

  23. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).

    Article  CAS  Google Scholar 

  24. Y. Muto, J. Phys.-Math. Soc. Jpn. 17, 629 (1943).

    CAS  Google Scholar 

  25. A. Lucas, Physica 35, 353 (1967).

    Article  CAS  Google Scholar 

  26. I. E. Dzyaloshinskii, E. M. Lifshits, and L. P. Pitaevskii, Sov. Phys. Usp. 4, 153 (1961).

    Article  Google Scholar 

  27. H. Kim, J. Sofo, D. Velegol, et al., Phys. Rev. A 72, 053201 (2005).

    Article  Google Scholar 

  28. R. F. Rajter, R. Podgornik, V. A. Parsegian, et al., Phys. Rev. B 76, 045417 (2007).

    Article  Google Scholar 

  29. J. F. Dobson, T. Gould, and I. Klich, Phys. Rev. A 80, 012506 (2009).

    Article  Google Scholar 

  30. B. J. Rodriguez, S. Jesse, A. P. Baddorf, et al., Phys. Rev. Lett. 98, 247603 (2007).

    Article  CAS  Google Scholar 

  31. R. F. French, V. A. Parsegian, R. Podgornik, et al., Rev. Mod. Phys. 82, 1889 (2010).

    Article  Google Scholar 

  32. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., Practice of ‘Lomonosov’ Supercomputer (Otkryt. Sistemy, Moscow, 2012) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Emelyanenko.

Additional information

Original Russian Text © K.A. Emelyanenko, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 5, pp. 773–779.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelyanenko, K.A. Analysis of Van der Waals interactions between nanoparticles with different geometries, with accounting for three-particle contributions to the total energy. Russ. J. Phys. Chem. 90, 1057–1062 (2016). https://doi.org/10.1134/S0036024416040087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416040087

Keywords

Navigation