Skip to main content
Log in

Effects of cooling rate, saturation temperature, and agitation on the metastable zone width of DL-malic acid-water system

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study of metastable zone width (MSZW) and nucleation parameters for a cooling crystallization of DL-malic acid-water system is described in this paper. Experimental determination of the MSZW was performed using a laser method in order to carry out the estimation of nucleation parameters. Measured MSZWs can be affected by a variety of parameters, such as cooling rate, saturation temperature, agitation rate, and so on. In this work, the MSZWs were found to decrease with an increase of saturation temperature, and levels of agitation, while it increased with an increase of cooling rate. Two classical theoretical approaches, Nyvlt’s approach and self-consistent Nyvlt-like approach were used to analyze the experimental data on MSZWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Mullin, Crystallization, 4th ed. (Butterworth-Heinemann, Oxford, 2001).

    Google Scholar 

  2. J. Nyvlt, J. Cryst. Growth 3–4, 377 (1968).

    Article  Google Scholar 

  3. N. Kubota, J. Cryst. Growth 310, 629 (2008).

    Article  CAS  Google Scholar 

  4. M. Kobari, N. Kubota, and I. Hirasawa, J. Cryst. Growth 317, 64 (2011).

    Article  CAS  Google Scholar 

  5. M. Volmer, Kinetik der Phasenbildung (Theodor Steinkopff, Dresden, Germany, 1939).

    Google Scholar 

  6. Y. I. Frenkel, Kinetic Theory of Liquids (Oxford Univ. Press, New York, 1946).

    Google Scholar 

  7. K. Sangwal, Cryst. Res. Technol. 44, 231 (2009).

    Article  CAS  Google Scholar 

  8. K. Sangwal, Cryst. Growth Des. 9, 942 (2009).

    Article  CAS  Google Scholar 

  9. N. Kubota, J. Cryst. Growth 312, 548 (2010).

    Article  CAS  Google Scholar 

  10. S. S. Kadam, H. J. M. Kramer, and J. H. ter Horst, Cryst. Growth Des. 11, 1271 (2011).

    Article  CAS  Google Scholar 

  11. M. Kaya, A. A. Ceyhan, and O. Sahin, Russ. J. Phys. Chem. A 88, 402 (2014).

    Article  CAS  Google Scholar 

  12. K. Sangwal, J. Cryst. Growth 312, 3316 (2010).

    Article  CAS  Google Scholar 

  13. X. Zhang, G. Qian, and X. Zhou, J. Chem. Eng. Data 57, 2963 (2012).

    Article  CAS  Google Scholar 

  14. N. A. Mitchell and P. J. Frawley, J. Cryst. Growth 312, 2740 (2010).

    Article  CAS  Google Scholar 

  15. E. Mielniczek-Brzoska, J. Cryst. Growth 401, 271 (2014).

    Article  CAS  Google Scholar 

  16. J. Nyvlt, O. Sohnel, M. Matuchova, et al., The Kinetics of Industrial Crystallization (Academia, Prague, 1985).

    Google Scholar 

  17. A. Mersmann and K. Bartosch, J. Cryst. Growth 183, 240 (1998).

    Article  CAS  Google Scholar 

  18. L. Dang, Z. Wang, and P. Liu, J. Chem. Eng. Data 52, 1545 (2007).

    Article  CAS  Google Scholar 

  19. J. Peng, Z. Nie, L. Li, et al., J. Chem. Eng. Data 58, 1288 (2013).

    Article  CAS  Google Scholar 

  20. A. Apelblat, M. Dov, J. Wisniak, et al., J. Chem. Thermodyn. 27, 35 (1995).

    Article  CAS  Google Scholar 

  21. Y. Yuan, Y. Leng, H. Shao, et al., Fluid Phase Equilib. 377, 27 (2014).

    Article  CAS  Google Scholar 

  22. A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 31, 85 (1999).

    Article  CAS  Google Scholar 

  23. B. Schroder, L.M. N. B. F. Santos, I. M. Marrucho, et al., Fluid Phase Equilib. 289, 140 (2010).

    Article  Google Scholar 

  24. F. L. Nordstrom and A. C. Rasmuson, Eur. J. Pharm. Sci. 36, 330 (2009).

    Article  Google Scholar 

  25. C. M. Romero and F. Suarez, J. Solution Chem. 38, 315 (2009).

    Article  CAS  Google Scholar 

  26. D. Kashchiev, A. Borissova, R. B. Hammond, et al., J. Cryst. Growth 312, 698 (2010).

    Article  CAS  Google Scholar 

  27. M. Kobari, N. Kubota, and I. Hirasawa, CrystEng-Comm 14, 5255 (2012).

    Article  CAS  Google Scholar 

  28. K. P. Liang, G. White, D. Wilkinson, et al., Ind. Eng. Chem. Res. 43, 1227 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Yuan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Leng, Y., Huang, C. et al. Effects of cooling rate, saturation temperature, and agitation on the metastable zone width of DL-malic acid-water system. Russ. J. Phys. Chem. 89, 1567–1571 (2015). https://doi.org/10.1134/S0036024415090381

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415090381

Keywords

Navigation