Skip to main content
Log in

Thermodynamic Modeling and Experimental Implementation of the Synthesis of Vanadium Oxide Films

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The paper describes the thermodynamic modeling and experimental study of the synthesis of vanadium oxide films at various temperatures from the tetrakis(ethylmethylaminovanadium) V[NC3H8]4 precursor in the presence of oxygen in an argon atmosphere. The thermodynamic modeling was carried out using the calculation of chemical equilibria based on the minimization of the Gibbs energy of the system. In the experimental part of the paper, the films were synthesized by the atomic layer deposition procedure. The thermodynamic modeling and experimental results agree with each other and can be used to develop procedures for the synthesis of film coatings based on vanadium oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. The phase complex is a set of condensed phases that occur in equilibrium with one another and with the gas phase.

  2. The lower the graphite content in the phase complex, the lower the oxygen amount (and the shorter the time) required to perform the second stage of the process.

  3. The contents of argon (m(Ar) = 1) an nitrogen (m(N2) = 0.5) in the process remain invariable and are not shown in Fig. 2.

REFERENCES

  1. M. F. Jager, C. Ott, P. M. Kraus, et al., Proc. Natl. Acad. Sci. U.S.A. 114, 9558 (2017). https://doi.org/10.1073/pnas.1707602114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959). https://doi.org/10.1103/PhysRevLett.3.34

    Article  CAS  Google Scholar 

  3. Z. Shao, X. Cao, H. Luo, et al., NPG Asia Mater. 10, 581 (2018). https://doi.org/10.1038/s41427-018-0061-2

    Article  Google Scholar 

  4. K. Liu, S. Lee, S. Yang, et al., Mater. Today 21, 875 (2018). https://doi.org/10.1016/j.mattod.2018.03.029

    Article  CAS  Google Scholar 

  5. C. Lu, Q. Lu, M. Gao, et al., Nanomaterials 11, 114 (2021). https://doi.org/10.3390/nano11010114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H. J. Schlag and W. Scherber, Thin Solid Films 366, 28 (2000). https://doi.org/10.1016/S0040-6090(00)00711-2

    Article  CAS  Google Scholar 

  7. KanaJ. B. Kana, J. M. Ndjaka, G. Vignaud, et al., Opt. Commun. 284, 807 (2011). https://doi.org/10.1016/j.optcom.2010.10.009

    Article  CAS  Google Scholar 

  8. J. Sun and G. K. Pribil, Appl. Surf. Sci. 421, 819 (2017). https://doi.org/10.1016/j.apsusc.2016.09.125

    Article  CAS  Google Scholar 

  9. R. M. Briggs, I. M. Pryce, and H. A. Atwater, Opt. Express 18, 11192 (2010). https://doi.org/10.1364/oe.18.011192

    Article  CAS  PubMed  Google Scholar 

  10. V. Y. Prinz, S. V. Mutilin, L. V. Yakovkina, et al., Nanoscale 12, 3443 (2020). https://doi.org/10.1039/C9NR08712E

    Article  CAS  PubMed  Google Scholar 

  11. S. V. Mutilin, V. Y. Prinz, V. A. Seleznev, et al., Appl. Phys. Lett. 113, 043101 (2018). https://doi.org/10.1063/1.5031075

    Article  CAS  Google Scholar 

  12. S. V. Mutilin, V. Y. Prinz, L. V. Yakovkina, et al., CrystEngComm 23, 443 (2021). https://doi.org/10.1039/D0CE01072C

    Article  CAS  Google Scholar 

  13. Zhou. You and S. Ramanathan, Proc. IEEE 103, 1289 (2015). https://doi.org/10.1109/JPROC.2015.2431914

  14. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011). https://doi.org/10.1146/annurev-matsci-062910-100347

    Article  CAS  Google Scholar 

  15. M. Nakano, K. Shibuya, N. Ogawa, et al., Appl. Phys. Lett. 103, 153503 (2013). https://doi.org/10.1063/1.4824621

    Article  CAS  Google Scholar 

  16. M. A. Kats, R. Blanchard, S. Zhang, et al., Phys. Rev. X 3, 041004 (2013). https://doi.org/10.1103/PhysRevX.3.041004

    Article  CAS  Google Scholar 

  17. C. Rios, P. Hosseini, C. D. Wright, et al., Adv. Mater. 26, 1372 (2014). https://doi.org/10.1002/adma.201304476

    Article  CAS  PubMed  Google Scholar 

  18. J. Faucheu, E. Bourgeat-Lami, and V. Prevot, Adv. Eng. Mater. 1800438 (2018). https://doi.org/10.1002/adem.201800438

  19. Y. Ke, S. Wang, G. Liu, et al., Small 14, 1802025 (2018). https://doi.org/10.1002/smll.201802025

    Article  CAS  Google Scholar 

  20. T.-J. K. Liu and K. Kuhn, CMOS and Beyond (Cambridge University Press, Cambridge, 2014). https://doi.org/10.1017/CBO9781107337886

    Book  Google Scholar 

  21. H.-F. Zhu, L.-H. Du, J. Li, et al., Appl. Phys. Lett. 112, 081103 (2018). https://doi.org/10.1063/1.5020930

    Article  CAS  Google Scholar 

  22. C. Ko, Z. Yang, and S. Ramanathan, ACS Appl. Mater. Interfaces 3, 3396 (2011). https://doi.org/10.1021/am2006299

    Article  CAS  PubMed  Google Scholar 

  23. M. M. Qazilbash, M. Brehm, B.-G. Chae, et al., Science 318, 1750 (2007). https://doi.org/10.1126/science.1150124

    Article  CAS  PubMed  Google Scholar 

  24. A. Zimmers, L. Aigouy, M. Mortier, et al., Phys. Rev. Lett. 110, 056601 (2013). https://doi.org/10.1103/PhysRevLett.110.056601

    Article  CAS  PubMed  Google Scholar 

  25. Y. J. Chang, J. S. Yang, Y. S. Kim, et al., Phys. Rev. B 76, 075118 (2007). https://doi.org/10.1103/PhysRevB.76.075118

    Article  CAS  Google Scholar 

  26. M. M. Qazilbash, A. Tripathi, A. A. Schafgans, et al., Phys. Rev. 83, 165108 (2011). https://doi.org/10.1103/PhysRevB.83.165108

    Article  CAS  Google Scholar 

  27. D. Stroud, Phys. Rev. B 12, 3368 (1975). https://doi.org/10.1103/PhysRevB.12.3368

    Article  Google Scholar 

  28. N. Inomata, T. Usuda, Y. Yamamoto, et al., Sensors Actuators A: Phys. 346, 113823 (2022). https://doi.org/10.1016/j.sna.2022.113823

    Article  CAS  Google Scholar 

  29. G. Li, D. Xie, H. Zhong, et al., Nat. Commun. 13, 1729 (2022). https://doi.org/10.1038/s41467-022-29456-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L. V. Yakovkina, S. V. Mutilin, V. Y. Prinz, et al., J. Mater. Sci. 52, 4061 (2017). https://doi.org/10.1007/s10853-016-0669-y

    Article  CAS  Google Scholar 

  31. Y. Zhang, W. Xiong, W. Chen, et al., Nanomaterials 11, 338 (2021). https://doi.org/10.3390/nano11020338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. X. Xue, Z. Zhou, B. Peng, et al., RSC Adv. 5, 79249 (2015). .https://doi.org/10.1039/C5RA13349A

    Article  CAS  Google Scholar 

  33. R. Shi, N. Shen, J. Wang, et al., Appl. Phys. Rev. 6, 011312 (2019). https://doi.org/10.1063/1.5087864

    Article  CAS  Google Scholar 

  34. J. Li, Z. An, W. Zhang, et al., Appl. Surf. Sci. 529, 147108 (2020). https://doi.org/10.1016/j.apsusc.2020.147108

    Article  CAS  Google Scholar 

  35. M. Brahlek, L. Zhang, J. Lapano, et al., MRS Commun. 7, 27 (2017). https://doi.org/10.1557/mrc.2017.2

    Article  CAS  Google Scholar 

  36. V. P. Prasadam, N. Bahlawane, F. Mattelaer, et al., Mater. Today Chem. 12, 396 (2019). https://doi.org/10.1016/j.mtchem.2019.03.004

    Article  CAS  Google Scholar 

  37. G. Bai, K. M. Niang, and J. Robertson, J. Vac. Sci. Technol., A 38, 052402 (2020). https://doi.org/10.1116/6.0000353

    Article  CAS  Google Scholar 

  38. K. M. Niang, G. Bai, and J. Robertson, J. Vac. Sci. Technol., A 38, 042401 (2020). .https://doi.org/10.1116/6.0000152

    Article  CAS  Google Scholar 

  39. A. C. Kozen, H. Joress, M. Currie, et al., J. Phys. Chem. C 121, 19341 (2017). https://doi.org/10.1021/acs.jpcc.7b04682

    Article  CAS  Google Scholar 

  40. V. A. Shestakov and M. L. Kosinova, Russ. Chem. Bull. 70, 283 (2021).

    Article  CAS  Google Scholar 

  41. V. A. Shestakov and M. L. Kosinova, Russ. J. Inorg. Chem. 66, 1703 (2021).

    Article  CAS  Google Scholar 

  42. V. A. Shestakov, V. I. Kosyakov, and M. L. Kosinova, Russ. J. Inorg. Chem. 65, 898 (2020). https://doi.org/10.1134/S0036023621110164

    Article  CAS  Google Scholar 

  43. V. A. Shestakov, L. V. Yakovkina, and V. N. Kichay, Russ. J. Inorg. Chem. 67, 1956 (2022). https://doi.org/10.1134/S0036023622601179

    Article  CAS  Google Scholar 

  44. I. S. Merenkov, H. Katsui, M. N. Khomyakov, et al., J. Eur. Ceram. Soc. 39, 5123 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.08.006

    Article  CAS  Google Scholar 

  45. V. A. Titov, V. I. Kosyakov, and F. A. Kuznetsov, Problems of Electronic Materials Science (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  46. Y.-B. Kang, J. Eur. Ceram. Soc. 32, 3187 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.04.045

    Article  CAS  Google Scholar 

  47. I. Barin, Termodynamical Data of Pure Substances (New York, 1989).

    Google Scholar 

  48. A. Mahmoodinezhad, C. Janowitz, F. Naumann, et al., J. Vac. Sci. Technol., A 38, 022404 (2020). .https://doi.org/10.1116/1.5134800

    Article  CAS  Google Scholar 

  49. K. Henkel, H. Gargouri, B. Gruska, et al., J. Vac. Sci. Technol. A: Vacuum, Surfaces, Film 32, A107 (2013). https://doi.org/10.1116/1.4831897

    Article  CAS  Google Scholar 

  50. J. Haeberle, K. Henkel, H. Gargouri, et al., Beilstein J. Nanotechnol. 4, 732 (2013). https://doi.org/10.3762/bjnano.4.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Inorganic. Files, International Centre for Diffraction Data, Pennsylvania, USA, 2010.

  52. F. Ureña-Begara, A. Crunteanu, and J. P. Raskin, Appl. Surf. Sci. 403, 717 (2017). https://doi.org/10.1016/j.apsusc.2017.01.160

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank the core facilities VTAN, Novosibirsk State University, for measurement of RS spectra and the center for collective use “Nanostructures” for providing the ALD setup for experiments.

Funding

The experimental studies were carried out at the Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, and were supported by the Russian Science Foundation (project no. 21-19-00873). Thermodynamic modeling was performed at the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, and supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 121031700314-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shestakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, V.A., Seleznev, V.A., Mutilin, S.V. et al. Thermodynamic Modeling and Experimental Implementation of the Synthesis of Vanadium Oxide Films. Russ. J. Inorg. Chem. 68, 580–586 (2023). https://doi.org/10.1134/S0036023623600491

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600491

Keywords:

Navigation