Skip to main content
Log in

Thermodynamic Study of a Volatile Complex of Magnesium Benzoyltrifluoroacetonate with N,N,N',N'-Tetramethylethylenediamine

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

To expand the library of volatile magnesium precursors certified for effective use in chemical gas-phase deposition of the corresponding oxide or fluoride layers, a thermodynamic study of the mixed ligand complex Mg(tmeda)(btfac)2 (tmeda is N,N,N',N'-tetramethylethylenediamine, btfac is benzoyl trifluoroacetonate) have been performed. The melting process has been studied using DSC (Tm = 459.4 ± 0.3 K, \({{\Delta }_{{\text{m}}}}H_{{4594}}^{^\circ }\) = 42.9 ± 0.4 kJ/mol); the sublimation process has been studied using the flow (transfer) method in the temperature range 407–447 K (\({{\Delta }_{{{\text{subl}}}}}H_{{427}}^{^\circ }\) = 163 ± 6 kJ/mol, ΔsublS427 = 293 ± 14 J/(mol K)). The substance passes into the gas phase with partial decomposition. Thermodynamic modeling of the composition of condensed phases formed from Mg(tmeda)(btfac)2 with the addition of H2 or O2 has been performed depending on the temperature (700–1300 K), total pressure (133–13 332 Pa), and the ratio of the reagent gas to the precursor (0–300). The data obtained can be used to determine the experimental parameters of the processes for obtaining functional layers. Comparison of the results with a similar trifluoroacetylacetonate complex made it possible to quantitatively reveal the effect of replacing the methyl group in the anionic ligand with a phenyl one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. V. Zherikova and S. P. Verevkin, RSC Adv. 10, 38158 (2020).

  2. W. Acree Jr. and J. S. Chickos, J. Phys. Chem. Ref. Data 46, 013104 (2017). https://doi.org/10.1063/1.4970519

    Article  CAS  Google Scholar 

  3. H. S. Hull, A. F. Reid, and A. G. Turnbull, Aust. J. Chem. 18, 249 (1965). https://doi.org/10.1071/CH9650249

    Article  CAS  Google Scholar 

  4. D. Hayashi, A. Teraoka, Y. Sakaguchi, et al., J. Cryst. Growth 453, 54 (2016). https://doi.org/10.1016/j.jcrysgro.2016.08.002

    Article  CAS  Google Scholar 

  5. M. A. V. Silva, M. A. R. Matos, J. M. Goncalves, et al., Thermochim. Acta 247, 245 (1994). https://doi.org/10.1016/0040-6031(94)80125-8

    Article  Google Scholar 

  6. M. A. V. Silva, M. A. R. Matos, J. M. Goncalves, et al., J. Chem. Thermodyn. 30, 299 (1998). https://doi.org/10.1006/jcht.1997.0299

    Article  Google Scholar 

  7. E. Pousaneh, T. Rüffer, K. Assim, et al., RSC Adv. 8, 19668 (2018). https://doi.org/10.1039/c8ra01851k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Maria, J. Selvakumar, V. S. Raghunathan, et al., Surf. Coat. Technol. 204, 222 (2009). https://doi.org/10.1016/j.surfcoat.2009.07.022

    Article  CAS  Google Scholar 

  9. E. S. Vikulova, K. V. Zherikova, I. V. Korolkov, et al., J. Therm. Anal. Calorim. 118, 849 (2014). https://doi.org/10.1007/s10973-014-3997-7

    Article  CAS  Google Scholar 

  10. K. V. Zherikova, E. S. Vikulova, A. M. Makarenko, et al., Thermochim. Acta 689, 178643 (2020). https://doi.org/10.1016/j.tca.2020.178643

    Article  CAS  Google Scholar 

  11. L. Wang, Y. Yang, J. Ni, et al., Chem. Mater. 17, 5697 (2005). https://doi.org/10.1021/cm0512528

    Article  CAS  Google Scholar 

  12. E. S. Vikulova, A. S. Sukhikh, M. A. Mikhaylova, et al., J. Struct. Chem. 63, 1323 (2022). https://doi.org/10.1134/S0022476622080133

    Article  CAS  Google Scholar 

  13. H. S. Kim, S. M. George, B. K. Park, et al., Dalton Trans. 44, 2103 (2015). https://doi.org/10.1039/c4dt03497j

    Article  CAS  PubMed  Google Scholar 

  14. E. S. Vikulova, K. V. Zherikova, S. V. Sysoev, et al., J. Therm. Anal. Calorim. 137, 923 (2019). https://doi.org/10.1007/s10973-018-07991-y

    Article  CAS  Google Scholar 

  15. M. E. Fragala, R. G. Toro, P. Rossi, et al., Chem. Mater. 21, 2062 (2009). https://doi.org/10.1021/cm802923w

    Article  CAS  Google Scholar 

  16. M. E. Fragala, R. G. Toro, S. Privitera, et al., Chem. Vapor Deposit. 17, 80 (2011). https://doi.org/10.1002/cvde.201106849

    Article  CAS  Google Scholar 

  17. J. Hennessy, A. D. Jewell, F. Greer, et al., J. Vac. Sci. Technol. A 33, 01A125 (2015). https://doi.org/10.1116/1.4901808

  18. Y. Lee, H. Sun, M. J. Young, et al., Chem. Mater. 28, 2022 (2016). https://doi.org/10.1021/acs.chemmater.5b04360

    Article  CAS  Google Scholar 

  19. M. Mäntymäki, M. Ritala, and M. Leskelä, Coatings 8, 277 (2018). https://doi.org/10.3390/coatings8080277

    Article  CAS  Google Scholar 

  20. S. H. Lee, H. Park, H. Kim, et al., Comput. Mater. Sci. 191, 110327 (2021). https://doi.org/10.1016/j.commatsci.2021.110327

    Article  CAS  Google Scholar 

  21. I. S. Merenkov, B. A. Gostevskii, P. O. Krasnov, et al., New J. Chem. 41, 11926 (2017). https://doi.org/10.1039/C7NJ01651D

    Article  CAS  Google Scholar 

  22. V. A. Shestakov, V. I. Kosyakov, and M. L. Kosinova, Russ. Chem. Bull. 68, 1983 (2019). https://doi.org/10.1007/s11172-019-2656-3

    Article  CAS  Google Scholar 

  23. V. A. Shestakov and M. L. Kosinova, Russ. Chem. Bull. 70, 1446 (2021). https://doi.org/10.1007/s11172-021-3238-8

    Article  CAS  Google Scholar 

  24. E. O. Drozdov, S. D. Dubrovenskii, and A. A. Malygin, Russ. J. Gen. Chem. 90, 880 (2020). https://doi.org/10.1134/S1070363220050217

    Article  CAS  Google Scholar 

  25. T. F. Mikhailovskaya, A. G. Makarov, N. Y. Selikhova, et al., J. Fluorine Chem. 183, 44 (2016). https://doi.org/10.1016/j.jfluchem.2016.01.009

    Article  CAS  Google Scholar 

  26. T. Hatanpää, J. Kansikas, I. Mutikainen, et al., Inorg. Chem. 40, 788 (2001). https://doi.org/10.1021/ic000310i

    Article  CAS  PubMed  Google Scholar 

  27. A. N. Golubenko, M. L. Kosinova, V. A. Titov, et al., Thin Solid Films 293, 11 (1997). https://doi.org/10.1016/S0040-6090(96)09071-2

    Article  CAS  Google Scholar 

  28. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances. Reference Edition in 4th vol. (Nauka, Moscow, 1978–1982) [in Russian].

  29. F. A. Kuznetsov, M. G. Voronkov, V. O. Borisov, et al., Fundamental Principles of the Processes of Chemical Deposition of Films and Structures for Nanoelectronics, Ser. Integration projects of SO RAS, No. 37 (Izd. SO RAN, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  30. N. N. Kiseleva, Computer Design of Inorganic Compounds: Using Databases and Artificial Intelligence Methods (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  31. E. S. Vikulova, K. V. Zherikova, D. A. Piryazev, et al., J. Struct. Chem. 58, 1681 (2017). https://doi.org/10.1134/S0022476617080297

    Article  CAS  Google Scholar 

  32. D. M. Tsymbarenko, A. M. Makarevich, A. E. Shchukin, et al., Polyhedron 134, 246 (2017). https://doi.org/10.1016/j.poly.2017.05.062

    Article  CAS  Google Scholar 

  33. S. Mishra and S. Daniele, Chem. Rev. 115, 8379 (2015). https://doi.org/10.1021/cr400637c

    Article  CAS  PubMed  Google Scholar 

  34. A. L. Pellegrino, G. Lucchini, A. Speghini, et al., J. Mater. Res. 35, 2950 (2020). https://doi.org/10.1557/jmr.2020.253

    Article  CAS  Google Scholar 

  35. T. S. Pochekutova, V. K. Khamylov, G. K. Fukin, et al., Polyhedron 177, 114263 (2020). https://doi.org/10.1016/j.poly.2019.114263

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Chemical Research Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk Institute of Organic Chemistry, Siberian Branch, RAS) for elemental analysis studies and the Center for Collective Use of the Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences for recording NMR spectra and diffraction patterns (State Assignment of the Nikolaev Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, projects nos. 121031700314-5 and 121031700313-8).

Funding

This work was supported by the Russian Science Foundation, project no. 21-73-00252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Vikulova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikulova, E.S., Sysoev, S.V., Sartakova, A.V. et al. Thermodynamic Study of a Volatile Complex of Magnesium Benzoyltrifluoroacetonate with N,N,N',N'-Tetramethylethylenediamine. Russ. J. Inorg. Chem. 68, 133–139 (2023). https://doi.org/10.1134/S003602362260232X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362260232X

Keywords:

Navigation