Skip to main content
Log in

Manganese-Doped Composites Based on Titanium Dioxide: Template Sol–Gel Synthesis, Structure, and Properties

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Manganese-doped nanostructured composites based on TiO2 were obtained by the template sol–gel method. By a set of investigation techniques, it was established that manganese doping leads to the appearance of a rutile phase, which grows with increasing manganese content. It was found that during the template sol–gel synthesis of the TiO2/Mn composite, the doping element is not only incorporated into the titanium dioxide structure, but also forms separate phases on its surface. Study of the magnetic characteristics of the obtained composites revealed ferromagnetic ordering at room temperature, while lowering the temperature leads to an increase in the coercive force and appearance of the ferromagnet/antiferromagnet type exchange interaction. A magnetic transition at about 43 K, associated with the transfer of Mn3O4 nanoparticles to the ferromagnetic state, was detected in the composites. Undoped titanium dioxide showed a high photocatalytic activity in the visible spectral range, providing 98% degree of indigo carmine degradation. Manganese doping of TiO2 microtubes inhibited the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. A. Uimin, A. S. Minin, A. E. Ermakov, et al., Mezhd. Zh. Prikl. Fund. Issled. 12, 49 (2017). https://applied-research.ru/ru/article/view?id=11961

  2. S. Sharma, S. Chaudhary, S. C. Kashyap, and S. K. Sharma, J. Appl. Phys. 109, 083905 (2011). https://doi.org/10.1063/1.3567938

    Article  CAS  Google Scholar 

  3. Ding Peng, Liu Fa-Min, Zhou Chang-Cang, et al., Chin. Phys. B 19, 1181102 (2010). https://doi.org/10.1088/1674-1056/19/11/118102

    Article  Google Scholar 

  4. R. I. Khaibullin, L. R. Tagirov, Sh. Z. Ibragimov, et al., Uch. Zap. Kazan. Gos. Univ. 149, 31 (2007).

    Google Scholar 

  5. M. A. Uymin, A. S. Minin, A. Y. Yermakov, et al., Lett Mater. 9, 91 (2019). https://doi.org/10.22226/2410-3535-2019-1-91-96

    Article  Google Scholar 

  6. O. A. Shilova, A. S. Kovalenko, A. M. Nikolaev, et al., Russ. J. Inorg. Chem. 66, 665 (2021). https://doi.org/10.1134/S0036023621050181

    Article  Google Scholar 

  7. T. Ochiai and A. Fujishima, J. Photochem. Photobiol. C 13, 247 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.07.001

    Article  CAS  Google Scholar 

  8. A. Fujishima and K. Honda, Nature 238, 37 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  9. J. Wang, Y. Guo, B. Liu, et al., Ultrason. Sonochem. 18, 177 (2011). https://doi.org/10.1016/j.ultsonch.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  10. H. A. Reddam, R. Elmail, S. C. Lloria, et al., Ceram. Vidrio 59, 138 (2019). https://doi.org/10.1016/j.bsecv.2019.09.005

    Article  CAS  Google Scholar 

  11. L. Sangaletti, M. C. Mozzati, G. Drera, et al., Phys. Rev. B: Condens. Matter. 78, 075210 (2008). https://doi.org/10.1103/PhysRevB.78.075210

    Article  CAS  Google Scholar 

  12. N. Akdogan, A. Nefedov, H. Zabel, et al., J. Phys. D: Appl. Phys. 42, 115005 (2009). https://doi.org/10.1088/0022-3727/42/11/115005

    Article  CAS  Google Scholar 

  13. W. B. Mi, E. Y. Jiang, and H. L. Bai, J. Magn. Magn. Mater. 321, 2472 (2009). https://doi.org/10.1016/j.jmmm.2009.03.017

    Article  CAS  Google Scholar 

  14. S. Bhattacharyya, A. Pucci, D. Zitoun, et al., Nanotecnology 19, 495711 (2008). https://doi.org/10.1088/0957-4484/19/49/495711

    Article  CAS  Google Scholar 

  15. Z. M. Tian, S. I. Yan, Y. Q. Wang, et al., J. Phys. D: Appl. Phys. 41, 055006 (2008). https://doi.org/10.1088/0022-3727/41/5/055006

    Article  CAS  Google Scholar 

  16. N. H. Hong, J. Sakaib, W. Prellierc, et al., Physica B: Condens. Matter. 355, 295 (2005). https://doi.org/10.1016/j.physb.2004.11.021

    Article  CAS  Google Scholar 

  17. J. Osterwalder, T. Droubaya, T. Kaspara, et al., Thin Solid Films 484, 289 (2005). https://doi.org/10.1016/j.tsf.2005.02.028

    Article  CAS  Google Scholar 

  18. V. V. Zheleznov, Y. V. Sushkov, E. I. Voit, et al., J. Appl. Spectrosc. 81, 983 (2015). https://doi.org/10.1007/s10812-015-0039-6

    Article  CAS  Google Scholar 

  19. D. P. Opra, S. V. Gnedenkov, S. L. Sinebryukhov, et al., Elektrokhim. Energ. 19, 123 (2019). https://doi.org/10.18500/1608-4039-2019-19-3-123-140

    Article  Google Scholar 

  20. S. A. Kukharenko, A. E. Shilo, P. P. Itsenko, et al., J. Superhard Mater. 32, 396 (2010). https://doi.org/10.3103/S1063457610060055

    Article  Google Scholar 

  21. J. Sackey, M. Akbari, R. Morad, et al., J. Alloys Compd. 854, 156987 (2021). https://doi.org/10.1016/j.jallcom.2020.156987

    Article  CAS  Google Scholar 

  22. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005). https://doi.org/10.1038/nmat1310

    Article  CAS  PubMed  Google Scholar 

  23. A. E. Ermakov, M. A. Uimin, A. V. Korolev, et al., Phys. Solid State 59, 469 (2017). https://doi.org/10.1134/S1063783417030106

    Article  CAS  Google Scholar 

  24. K. Oganisian, A. Hreniak, A. Sikora, et al., Proc. Appl. Ceram. 9, 43 (2015). https://doi.org/10.2298/PAC1501043O

    Article  Google Scholar 

  25. M. Wang, B. Nie, K.-K. Yee, et al., Chem. Commun. 52, 2988 (2016). https://doi.org/10.1039/C5CC09176D

    Article  CAS  Google Scholar 

  26. A. Šuligoj, I. Arčon, M. Mazaj, et al., J. Mater. Chem. A 6, 9882 (2018). https://doi.org/10.1039/c7ta07176k

    Article  CAS  Google Scholar 

  27. M. Lešnik, D. Verhovšek, N. Veronovski, et al., Mater. Technol. 52, 411 (2018). https://doi.org/10.17222/mit.2017.012

    Article  CAS  Google Scholar 

  28. S. M. Chang and W. S. Liu, Appl. Catal. B 156157, 466 (2014). https://doi.org/10.1016/j.apcatb.2014.03.044

    Article  CAS  Google Scholar 

  29. H. Sudrajat, S. Babel, A. T. Ta, et al., J. Phys. Chem. Solids 144, 109517 (2020). https://doi.org/10.1016/j.jpcs.2020.109517

    Article  CAS  Google Scholar 

  30. J. Lee, A. Gopalan, G. Saianand, et al., Nanomaterials 10, 456 (2020). https://doi.org/10.3390/nano10030456

    Article  CAS  PubMed Central  Google Scholar 

  31. X. Ma, W. Zhou, and Y. Chen, Materials 10, 631 (2017). https://doi.org/10.3390/ma10060631

    Article  CAS  PubMed Central  Google Scholar 

  32. Z. Xu, C. Li, N. Fu, et al., J. Appl. Electrochem. 48, 1197 (2018). https://doi.org/10.1007/s10800-018-1198-y

    Article  CAS  Google Scholar 

  33. R. Chauhan, A. Kumar, and R. P. Chaudhary, Spectrochim. Acta A 98, 256 (2019). https://doi.org/10.1016/j.saa.2012.08.009

    Article  CAS  Google Scholar 

  34. L. N. Obolenskaya, E. N. Domoroshchina, E. V. Savinkina, et al., Fund. Issled. 13, 796 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using equipment of the center for collective use “Far Eastern Center for Structural Research” of the Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences.

Funding

This study was performed within the framework of the State assignment of the Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, topic no. 0205-2021-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Tkachenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, I.A., Marchenko, Y.V., Vasilyeva, M.S. et al. Manganese-Doped Composites Based on Titanium Dioxide: Template Sol–Gel Synthesis, Structure, and Properties. Russ. J. Inorg. Chem. 67, 1339–1347 (2022). https://doi.org/10.1134/S0036023622090169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622090169

Keywords:

Navigation