Skip to main content
Log in

Syntheses, Structures, and Magnetic Properties of Two Cu(II) Coordination Polymers Based on 4-Nitrophthalic Acid

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two new Cu(II) coordination polymers, {[Cu(4-NPA)(btmb)]·1.5H2O}n (1) and {[Cu(4-NPA)(tpp)]·1.5H2O}n (2) (H24-NPA is 4-mitrophthalic acid, btmb is 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, tpp is 2,4,6-tris(4-pyridyl)pyridine) have been synthesized by the hydrothermal reaction and characterized by single crystal X-ray diffraction, elemental analysis, and IR spectroscopy. The complex 1 is characterized by a 2D wave layer structure containing 1D Cu-carboxylate chains. In this case, the predominantly square-planar geometry [CuO2N2] of the central copper atom is formed by pairs of coordinated 4-NPA anions and btmb molecules. In 2, The Cu(II) ion forms a distorted [CuO3N2] trigonal bipyramid by three carboxylate oxygen atoms and two nitrogen atoms. Two Cu(II) neighbors are linked by two µ2-carboxylates adopting bridging coordination mode to form one dinuclear unit. The dinuclear units are cohered by mated 4-NPA dianions to produce one 1D Cu-carboxylate chain, and further extend by tpp molecules to produce a two-dimensional layer. In addition, powder X-ray diffraction and thermogravimetric analysis of the obtained complexes were studied, as well as the magnetic properties of complex 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Khosravi, J. Mokhtari, M. R. Naimi-Jamal, et al., RSC Adv. 7, 46022 (2017). https://doi.org/10.1039/c7ra09772g

    Article  CAS  Google Scholar 

  2. K. Natarajan, A. K. Gupta, S. N. Ansari, et al., ACS Appl. Mater. Interfaces 11, 13295 (2019). https://doi.org/10.1021/acsami.9b01754

    Article  CAS  PubMed  Google Scholar 

  3. X. L. Chen, L. Shang, H. L. Cui, et al., CrystEngComm 22, 5900 (2020). https://doi.org/10.1039/D0CE00950D

    Article  CAS  Google Scholar 

  4. L. P. Tang, S. Yang, D. Liu, et al., J. Mater. Chem. A 8, 14356 (2020). https://doi.org/10.1039/D0TA03356A

    Article  CAS  Google Scholar 

  5. P. Wang, S. J. Long, and C. D. Si, Russ. J. Inorg. Chem. 64, 1769 (2019). https://doi.org/10.1134/S003602361914016X

    Article  CAS  Google Scholar 

  6. X. Y. Tan, J. Wang, C. Y. Rao, et al. Russ. J. Coord. Chem. 47, 296 (2021). https://doi.org/10.1134/S1070328421040072

    Article  CAS  Google Scholar 

  7. A. Mushtaq, S. Ali, M. N. Tahir, et al., Russ. J. Inorg. Chem. 64, 1365 (2019). https://doi.org/10.1134/S0036023619110147

    Article  Google Scholar 

  8. G. Q. Fu, Y. Fang, J. J. Yao, et al., J. Struct. Chem. 62, 810 (2021). https://doi.org/10.1134/S0022476621050176

    Article  CAS  Google Scholar 

  9. G. Z. Liu, X. D. Li, and L. Y. Xin, et al., J. Solid State Chem. 203, 106 (2013). https://doi.org/10.1016/j.jssc.2013.03.053

    Article  CAS  Google Scholar 

  10. G. F. Wang and S. W. Sun, J. Struct. Chem. 61, 1827 (2020). https://doi.org/10.1134/S0022476620110165

    Article  CAS  Google Scholar 

  11. G. F. Wang and S. W. Sun, J. Struct. Chem. 62, 251 (2021). https://doi.org/10.1134/S0022476621020098

    Article  CAS  Google Scholar 

  12. Y. Liu, W. Li, Y. Q. Yang, et al., J. Struct. Chem. 62, 740 (2021). https://doi.org/10.1134/S0022476621050103

    Article  CAS  Google Scholar 

  13. G. L. Li, W. D. Yin, G. Z. Liu, et al., J. Solid State Chem. 220, 1 (2014). https://doi.org/10.1016/j.jssc.2014.08.007

    Article  CAS  Google Scholar 

  14. Y. F. Wang and L. Y. Wang, Chin. J. Struct. Chem. 38, 1329 (2019). https://doi.org/10.14102/j.cnki.0254-5861.2011-2260

    Article  CAS  Google Scholar 

  15. D. A. Garnovskii, V. G. Vlasenko, G. G. Aleksandrov, et al., Russ. J. Coord. Chem. 44, 596 (2018). https://doi.org/10.1134/S1070328418100032

    Article  CAS  Google Scholar 

  16. K. Wang, Russ. J. Coord. Chem. 45, 371 (2019). https://doi.org/10.1134/S1070328419040092

    Article  CAS  Google Scholar 

  17. H. N. Chang, Y. H. Li, Z. C. Hao, et al., Trans. Met. Chem. 42, 783 (2017). https://doi.org/10.1007/s11243-017-0186-0

    Article  CAS  Google Scholar 

  18. Z. Xing, Q. W. Wang, W. Sui, et al., Chin. J. Struct. Chem. 37, 125 (2018). https://doi.org/10.14102/j.cnki.0254-5861.2011-1669

    Article  CAS  Google Scholar 

  19. G. L. Li, G. Z. Liu, L. F. Ma, et al., Chem. Commun. 50, 2615 (2014). https://doi.org/10.1039/c3cc49106d

    Article  CAS  Google Scholar 

  20. L. L. Han, T. P. Hu, K. Mei, et al., Dalton Trans. 44, 6052 (2015). https://doi.org/10.1039/c4dt03868a

    Article  CAS  PubMed  Google Scholar 

  21. W. G. Zhu, Y. Q. Zheng, L. X. Zhou, et al., J. Coord. Chem. 69, 270 (2016). https://doi.org/10.1080/00958972.2015.1105365

    Article  CAS  Google Scholar 

  22. Z. G. Jiang, X. Wu, Z. X. Xu, et al., CrystEngComm 22, 4206 (2020). https://doi.org/10.1039/D0CE00700E

    Article  CAS  Google Scholar 

  23. W. Yan, H. Hao, and H. G. Zheng, Dalton Trans. 45, 6418 (2016). https://doi.org/10.1039/c6dt00349d

    Article  CAS  PubMed  Google Scholar 

  24. J. Xu, P. Zhu, Y. Wang, et al., Inorg. Chim. Acta 511, 119852 (2020). https://doi.org/10.1016/j.ica.2020.119852

    Article  CAS  Google Scholar 

  25. K. Li, L. M. Zhu, L. L. Qian, et al., Polyhedron. 145, 53 (2018). https://doi.org/10.1016/j.poly.2018.01.030

    Article  CAS  Google Scholar 

  26. Y. Q. Chen, Y. Tian, Chin. J. Struct. Chem. 33, 1587 (2014). https://doi.org/10.14102/j.cnki.0254-5861.2011-0282

    Article  CAS  Google Scholar 

  27. S. V. F. Beddoe, A. J. Fitzpatrick, J. R. Price, et al., Cryst. Growth Des. 17, 6603 (2017). https://doi.org/10.1021/acs.cgd.7b01256

    Article  CAS  Google Scholar 

  28. W. Z. Qiao, T. Q. Song, P. Cheng, et al., Angew. Chem. Int. Ed. 58, 13302 (2019). https://doi.org/10.1002/anie.201906306

    Article  CAS  Google Scholar 

  29. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  30. G. M. Sheldrick, Acta Crystallogr. A71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  31. G. M. Sheldrick, C71, 3 (2015). https://doi.org/10.1107/S2053229614024218

  32. O. V. Loseva, T. A. Rodina, and A. V. Ivanov, Russ. J. Gen. Chem. 89, 2273 (2019). https://doi.org/10.1134/S1070363219110185

    Article  CAS  Google Scholar 

  33. L. Yang, D. R. Powell, and R. P. Houser, Dalton Trans. 9, 955 (2007). https://doi.org/10.1039/b617136b

    Article  CAS  Google Scholar 

  34. L. F. Ma, Z. Z. Shi, F. F. Li, et al., New J. Chem. 39, 810 (2015). https://doi.org/10.1039/C4NJ01898B

    Article  CAS  Google Scholar 

  35. O. S. Vynohradov, V. A. Pavlenko, I. O. Fritsky, et al. Russ. J. Inorg. Chem. 65, 1481 (2020). https://doi.org/10.1134/S0036023620100228

    Article  CAS  Google Scholar 

  36. A. W. Addison, T. N. Rao, J. Reedijk, et al., Dalton. Trans. 7, 1349 (1984). https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  37. T. A. Rodina, O. V. Loseva, A. I. Smolentsev, et al., Inorg. Chim. Acta 508, 119630 (2020). https://doi.org/10.1016/j.ica.2020.119630

    Article  CAS  Google Scholar 

  38. Y. P. Li, F. Y. Ju, G. L. Li, et al., Russ. J. Coord. Chem. 44, 214 (2018). https://doi.org/10.1134/S1070328418030028

    Article  CAS  Google Scholar 

  39. W. D. Yin, G. L. Li, Q. L. Liu, et al., J. Chin. Chem. Soc. 67, 744 (2020). https://doi.org/10.1002/jccs.201900257

    Article  CAS  Google Scholar 

  40. L. F. Ma, Y. Y. Wang, and L. Y. Wang, Eur. J. Inorg. Chem. 693 (2008). https://doi.org/10.1002/ejic.200700847

  41. Y. F. Wang, J. H. Tai, X. W. Yan, et al., Chin. J. Inorg. Chem. 34, 1121 (2018). https://doi.org/10.11862/CJIC.2018.135

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 21571093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Zhen Liu.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, WD., Li, GL., Liu, MN. et al. Syntheses, Structures, and Magnetic Properties of Two Cu(II) Coordination Polymers Based on 4-Nitrophthalic Acid. Russ. J. Inorg. Chem. 66, 2077–2083 (2021). https://doi.org/10.1134/S0036023621140151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621140151

Keywords:

Navigation