Skip to main content
Log in

Synthesis of Nanoscale WO3 by Chemical Precipitation Using Oxalic Acid

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of nanoscale WO3 by chemical precipitation with oxalic acid was studied. The obtained powder was characterized by IR-spectroscopy and powder X-ray diffraction, while its thermal behavior was investigated by simultaneous TGA/DSC analysis. It was found that before heat treatment, the precipitate is a mixture of WO3⋅2H2O and tungsten oxalate. The heat treatment at 400°C results in oxalate decomposition, while treatment at 500°C gives single-phase WO3 with monoclinic crystal structure (mean CSR of 36 ± 4 nm, particle length of 50 ± 5 nm, and particle width of 40 ± 4 nm). The electron work function of the surface of prepared WO3 particles in air was measured using Kelvin-probe force microscopy. It was shown that chemical precipitation of tungsten(VI) oxide using oxalic acid is a promising method for producing the corresponding nanopowder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. G. Granqvist, Thin Solid Films 564, 1 (2014). https://doi.org/10.1016/j.tsf.2014.02.002

    Article  CAS  Google Scholar 

  2. R. J. Mortimer, Annu. Rev. Mater. Res. 41, 241 (2011). https://doi.org/10.1146/annurev-matsci-062910-100344

    Article  CAS  Google Scholar 

  3. J. Zhang, J. P. Tu, X. H. Xia, et al., J. Mater. Chem. 21, 5492 (2011). https://doi.org/10.1039/c0jm04361c

    Article  CAS  Google Scholar 

  4. S. K. Deb, Philos. Mag. 27, 801 (1973). https://doi.org/10.1080/14786437308227562

    Article  CAS  Google Scholar 

  5. Y. Liu, J. Li, W. Li, et al., J. Phys. Chem. C 119, 14834 (2015). https://doi.org/10.1021/acs.jpcc.5b00966

    Article  CAS  Google Scholar 

  6. J. Zhang, X. Chang, C. Li, et al., J. Mater. Chem. A 6, 3350 (2018). https://doi.org/10.1039/c7ta10056f

    Article  CAS  Google Scholar 

  7. P. Dong, G. Hou, X. Xi, et al., Environ. Sci. Nano 4, 539 (2017). https://doi.org/10.1039/c6en00478d

    Article  CAS  Google Scholar 

  8. X. Liu, F. Wang, and Q. Wang, Phys. Chem. Chem. Phys. 14, 7894 (2012). https://doi.org/10.1039/c2cp40976c

    Article  CAS  PubMed  Google Scholar 

  9. T. He and J. Yao, J. Mater. Chem. 17, 4547 (2007). https://doi.org/10.1039/b709380b

    Article  CAS  Google Scholar 

  10. R. Huang, Y. Shen, L. Zhao, et al., Adv. Powder Technol. 23, 211 (2012). https://doi.org/10.1016/j.apt.2011.02.009

    Article  CAS  Google Scholar 

  11. S. Songara, V. Gupta, PatraM. Kumar, et al., J. Phys. Chem. Solids 73, 851 (2012). https://doi.org/10.1016/j.jpcs.2012.02.020

    Article  CAS  Google Scholar 

  12. D. A. Kozlov, A. B. Shcherbakov, T. O. Kozlova, et al., Molecules 25, 154 (2020). https://doi.org/10.3390/molecules25010154

    Article  CAS  Google Scholar 

  13. A. Ponzoni, E. Comini, G. Sberveglieri, et al., Appl. Phys. Lett. 88, 28 (2006). https://doi.org/10.1063/1.2203932

    Article  CAS  Google Scholar 

  14. A. Ponzoni, V. Russo, A. Bailini, et al., Sens. Actuators, B 153, 340 (2011). https://doi.org/10.1016/j.snb.2010.10.045

    Article  CAS  Google Scholar 

  15. M. Penza, M. A. Tagliente, L. Mirenghi, et al., Sens. Actuators, B 50, 9 (1998). https://doi.org/10.1016/S0925-4005(98)00149-X

    Article  CAS  Google Scholar 

  16. E. Llobet, G. Molas, P. Molinàs, et al., J. Electrochem. Soc. 147, 776 (2000). https://doi.org/10.1149/1.1393270

    Article  CAS  Google Scholar 

  17. C. Costa, C. Pinheiro, I. Henriques, et al., ACS Appl. Mater. Interfaces 4, 1330 (2012). https://doi.org/10.1021/am201606m

    Article  CAS  PubMed  Google Scholar 

  18. M. Breedon, P. Spizzirri, M. Taylor, et al., Cryst. Growth Des. 10, 430 (2010). https://doi.org/10.1021/cg9010295

    Article  CAS  Google Scholar 

  19. D. Chatzikyriakou, N. Krins, B. Gilbert, et al., Electrochim. Acta 137, 75 (2014). https://doi.org/10.1016/j.electacta.2014.05.139

    Article  CAS  Google Scholar 

  20. W. L. Kwong, N. Savvides, and C. C. Sorrell, Electrochim. Acta 75, 371 (2012). https://doi.org/10.1016/j.electacta.2012.05.019

    Article  CAS  Google Scholar 

  21. M. Giannouli and G. Leftheriotis, Sol. Energy Mater. Sol. Cells 95, 1932 (2011). https://doi.org/10.1016/j.solmat.2011.02.024

    Article  CAS  Google Scholar 

  22. S. Poongodi, P. S. Kumar, Y. Masuda, et al., RSC Adv. 5, 96416 (2015). https://doi.org/10.1039/c5ra19177g

    Article  CAS  Google Scholar 

  23. F. E. Annanouch, Z. Haddi, S. Vallejos, et al., ACS Appl. Mater. Interfaces 7, 6842 (2015). https://doi.org/10.1021/acsami.5b00411

    Article  CAS  PubMed  Google Scholar 

  24. W. Wu, Q. Yu, J. Lian, et al., J. Cryst. Growth 312, 3147 (2010). https://doi.org/10.1016/j.jcrysgro.2010.07.057

    Article  CAS  Google Scholar 

  25. T. L. Simonenko, V. A. Bocharova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 65, 459 (2020). https://doi.org/10.1134/S003602362004018X

    Article  CAS  Google Scholar 

  26. T. L. Simonenko, V. A. Bocharova, P. Y. Gorobtsov, et al., Russ. J. Inorg. Chem. 65, 1292 (2020). https://doi.org/10.1134/S0036023620090193

    Article  CAS  Google Scholar 

  27. T. L. Simonenko, V. A. Bocharova, P. Y. Gorobtsov, et al., Russ. J. Inorg. Chem. 65, 1304 (2020). https://doi.org/10.1134/S0036023620090181

    Article  CAS  Google Scholar 

  28. A. Phuruangrat, D. J. Ham, S. J. Hong, et al., J. Mater. Chem. 20, 1683 (2010). https://doi.org/10.1039/b918783a

    Article  CAS  Google Scholar 

  29. J. Zhang, Z. Liu, and Z. Liu, ACS Appl. Mater. Interfaces 8, 9684 (2016). https://doi.org/10.1021/acsami.6b00429

    Article  CAS  PubMed  Google Scholar 

  30. S. Yao, F. Qu, G. Wang, et al., J. Alloys Compd. 724, 695 (2017). https://doi.org/10.1016/j.jallcom.2017.07.123

    Article  CAS  Google Scholar 

  31. Z. Liu, M. Miyauchi, T. Yamazaki, et al., Sens. Actuators, B 140, 514 (2009). https://doi.org/10.1016/j.snb.2009.04.059

    Article  CAS  Google Scholar 

  32. D. Ma, H. Wang, Q. Zhang, et al., J. Mater. Chem. 22, 16633 (2012). https://doi.org/10.1039/c2jm32784h

    Article  CAS  Google Scholar 

  33. V. B. Patil, P. V. Adhyapak, S. S. Suryavanshi, et al., J. Alloys Compd. 590, 283 (2014). https://doi.org/10.1016/j.jallcom.2013.12.102

    Article  CAS  Google Scholar 

  34. D. Ding, Y. Shen, Y. Ouyang, et al., Thin Solid Films 520, 7164 (2012). https://doi.org/10.1016/j.tsf.2012.08.003

    Article  CAS  Google Scholar 

  35. A. K. Nayak, S. Lee, Y. I. Choi, et al., ACS Sustain. Chem. Eng. 5, 2741 (2017). https://doi.org/10.1021/acssuschemeng.6b03084

    Article  CAS  Google Scholar 

  36. S. Supothina, P. Seeharaj, S. Yoriya, et al., Ceram. Int. 33, 931 (2007). https://doi.org/10.1016/j.ceramint.2006.02.007

    Article  CAS  Google Scholar 

  37. A. C. Dengel, W. P. Griffith, R. D. Powell, et al., Dalton Trans. 1, 17 (1987).

    Google Scholar 

  38. M. Deepa, N. Sharma, P. Varshney, et al., J. Mater. Sci. 35, 5313 (2000). https://doi.org/10.1023/A:1004838627252

    Article  CAS  Google Scholar 

  39. H. Zhang, H. Zhao, Y. Q. Jiang, et al., Inorg. Chim. Acta 351, 311 (2003). https://doi.org/10.1016/S0020-1693(03)00177-4

    Article  CAS  Google Scholar 

  40. D. M. Li, L. F. Cui, Y. H. Xing, et al., J. Mol. Struct. 832, 138 (2007). https://doi.org/10.1016/j.molstruc.2006.08.014

    Article  CAS  Google Scholar 

  41. C. G. Young, R. W. Gable, and M. F. Mackayla, Inorg. Chem. 29, 1777 (1990). https://doi.org/10.1021/ic00334a036

  42. E. Llopis, J. A. Ramírez, A. Domenech, et al., J. Chem. Soc., Dalton Trans. 7, 1121 (1993). https://doi.org/10.1039/DT9930001121

    Article  Google Scholar 

  43. M. F. Daniel, B. Desbat, J. C. Lassegues, et al., J. Solid State Chem. 67, 235 (1987). https://doi.org/10.1016/0022-4596(87)90359-8

    Article  CAS  Google Scholar 

  44. M. Cindri, N. Strukan, V. Vrdoljak, et al., Inorg. Chim. Acta 309, 77 (2000). https://doi.org/10.1016/S0020-1693(00)00236-X

    Article  Google Scholar 

  45. S. Han, W. S. Shin, M. Seo, et al., Org. Electron. 10, 791 (2009). https://doi.org/10.1016/j.orgel.2009.03.016

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Powder X-ray diffraction study was carried out using the equipment of the Center for Collective Use of the Physical Investigation Methods of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The study was in part supported by the Russian Foundation for Basic Research (project no. 20-33-90136, synthesis of tungsten(VI) oxide) and by the Ministry of Education and Science of the Russian Federation within the state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences (studying of local electrophysical properties of the material).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Yu. Gorobtsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorobtsov, P.Y., Simonenko, T.L., Simonenko, N.P. et al. Synthesis of Nanoscale WO3 by Chemical Precipitation Using Oxalic Acid. Russ. J. Inorg. Chem. 66, 1811–1816 (2021). https://doi.org/10.1134/S0036023621120032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621120032

Keywords:

Navigation