Skip to main content
Log in

Zinc Peroxide Nanoparticles: Micellar Synthesis and Preparation of Films

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

ZnO2 nanoparticles (NPs) have been studied, which, due to their semiconducting and oxidizing properties, are promising for the development of new materials for optoelectronics, photocatalysis, sensorics, biomedicine, and theranostics. The synthesis of ZnO2 NPs in dispersed systems based on lipophilic surfactants has been tested. The possibility of simple synthesis of ZnO2 NPs ~5 nm in size by the reaction of Zn (CH3COO)2 and H2O2 in reverse micelles and emulsions of surfactants Brij 30, Span 80, and AOT has been shown. It has been found that the type of dispersed system and the nature of surfactants of the studied series have no strong effect on the size of NPs. The powder of ZnO2 NPs exhibits photoluminescence with an emission maximum at 520 nm; upon heating, it decomposes to ZnO with the release of oxygen and an exotherm with a maximum at 213°C. Using organosols of ZnO2 NPs and their mixtures with Au NPs, films were obtained on glass and polyethylene terephthalate substrates, as well as ZnO films by heating the ZnO2 films. The ZnO2 and ZnO films have a granular morphology, the composite ZnO2 and Au films have an island morphology based on spheroidal agglomerates of Au NPs with inclusions of ZnO2 nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. H. Bai and X. Liu, Mater. Lett. 64, 341 (2010). https://doi.org/10.1016/j.matlet.2009.11.008

    Article  CAS  Google Scholar 

  2. W. Chen, Y. H. Lu, M. Wang, et al., J. Phys. Chem. 113, 1320. https://doi.org/10.1021/jp808714v

  3. J. I. D. L. Ramirez, V. A. R. Villegas, S. P. Sicairos, et al., Catalysts 10, 1041 (2020). https://doi.org/10.3390/catal10091041

    Article  CAS  Google Scholar 

  4. S. Deb, P. K. Kalita, and P. Datta, Mater. Today: Proc. 4, 3994 (2017).

    Google Scholar 

  5. F. M. Simanjuntak, S. Chandrasekaran, C.-C. Lin, and T.-Y. Tseng, APL Mater. 7, 051108 (2019). https://doi.org/10.1063/1.5092991

    Article  CAS  Google Scholar 

  6. F. M. Simanjuntak, S. Chandrasekaran, C.-C. Lin, and T.-Y. Tseng, Nanoscale Res. Lett. 13 (2018). https://doi.org/10.1186/s11671-018-2743-7

  7. F. Aquí-Romero, F. J. Willars-Rodríguez, I. R. Chávez-Urbiola, and R. Ramírez-Bon, Semiconductor Sci. Technol. 35, 025012 (2020). https://doi.org/10.1088/1361-6641/ab5f2a

    Article  CAS  Google Scholar 

  8. Q. Guoa, Q. Zhanga, H. Wangb, and Z. Zhao, Cat. Commun. 103, 24 (2018). https://doi.org/10.1016/j.catcom.2017.09.010

    Article  CAS  Google Scholar 

  9. Y. Wolanov, P. V. Prikhodchenko, A. G. Medvedev, et al., Environ. Sci. Technol. 47, 8769 (2013). https://doi.org/10.1021/es4020629

    Article  CAS  PubMed  Google Scholar 

  10. C. Bergs, P. Simon, Y. Prots, and A. Pich, RSC Adv. 6, 84777 (2016). https://doi.org/10.1039/c6ra16009c

  11. C. T. Bergs, Master of Science Dissertation (Aachen University, Deutschland, 2017). http://publications.rwth-aachen.de/record/696219/files/696219.pdf

    Google Scholar 

  12. S. Verma and S. L. Jain, Inorg. Chem. Front 1, 534 (2014). https://doi.org/10.1039/c3qi00092c

    Article  CAS  Google Scholar 

  13. D. A. Giannakoudakisa, M. Florenta, R. Wallacea, et al., App. Cat. B 226, 429 (2018). https://doi.org/10.1016/j.apcatb.2017.12.068

    Article  CAS  Google Scholar 

  14. D. A. Sunderland and J. S. Binkley, Radiology 35, 606 (1940). https://doi.org/10.1148/35.5.606

    Article  CAS  Google Scholar 

  15. B. Sharma, N. Singh, R. P. Tandon, and A. K. Mahapatro, Adv. Mater. Proc. 2, 440 (2017). https://doi.org/10.5185/amp.2017/708

    Article  Google Scholar 

  16. C. Bergs, L. Bruck, R. R. Rosencrantz, et al., RSC Adv. 7, 38998 (2017). https://doi.org/10.1039/c7ra063321

    Article  CAS  Google Scholar 

  17. W. A. El-Shouny, M. S. Moawad, A. S. Haider, et al., Egypt. J. Bot. 59, 657 (2019). https://doi.org/10.21608/ejbo.2019.7062.1277

    Article  Google Scholar 

  18. L.-S. Lin, J.-F. Wang, J. Song, et al., Theranostics 9, 7200 (2019). https://doi.org/10.7150/thno.39831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Ahtzaz, M. Nasir, L. Shahzadi, et al., Mater. Design 132, 409 (2017). https://doi.org/10.1016/j.matdes.2017.07.023

    Article  CAS  Google Scholar 

  20. P. V. Prikhodchenko, A. G. Medvedev, A. A. Mikhaylov, et al., Mater. Lett. 116, 282 (2014). https://doi.org/10.1016/j.matlet.2013.11.042

    Article  CAS  Google Scholar 

  21. N. Uekawa, N. Mochizuki, J. Kajiwara, et al., Phys. Chem. Chem. Phys. 5, 929 (2003). https://doi.org/10.1039/b210990e

  22. J. E. Morales-Mendoza, F. Paraguay-Delgado, Moller J. A. Duarte, et al., J. Nano Res. 56, 49 (2019). https://doi.org/10.4028/www.scientific.net/JNanoR.56

    Article  CAS  Google Scholar 

  23. D. Sebök, T. Szabó, and I. Dékány, Appl. Surf. Sci. 255, 6953 (2009). https://doi.org/10.1016/j.apsusc.2009.03.020

    Article  CAS  Google Scholar 

  24. R. A. Pawar, D. R. Shinde, and P. S. Tambade, Desalin. Water Treat. 57, 16514 (2016). https://doi.org/10.1080/1944.3994.2015.1079248

    Article  CAS  Google Scholar 

  25. A. Moezzi, A. M. McDonagh, and M. B. Cortie, Chem. Eng. J. 185–186, 1 (2012). https://doi.org/10.1016/j.cej.2012.01.076

    Article  CAS  Google Scholar 

  26. X. Li, G. Zhu, J. Dou, et al., Ionics 25, 5527 (2019). https://doi.org/10.1007/s11581‑019‑03118‑x

    Article  CAS  Google Scholar 

  27. J. M. George, A. Antony, and B. Mathew, Microchim. Acta 185 (2018). https://doi.org/10.1007/s00604-018-2894-3

  28. F. Huang, S. Zhu, F. Wang, et al., Matter 2, 1091 (2020). https://doi.org/10.1016/j.matt.2020.03.002

    Article  Google Scholar 

  29. F. Rahman, Opt. Eng. 58, 010901 (2019). https://doi.org/10.1117/1.OE.58.1.010901

    Article  CAS  Google Scholar 

  30. S. K. Paul, H. Dutta, S. Sarkar, et al., Food Rev. Int. 35, 505 (2019). https://doi.org/10.1080/87559129.2019.1573828

    Article  CAS  Google Scholar 

  31. X. Yu, T. J. Marks, and A. Facchetti, Nature Mater. 15, 383 (2016). https://doi.org/10.1038/NMAT4599

    Article  CAS  Google Scholar 

  32. O. A. Vorob’eva, A. A. Pavinskaya, A. V. Kochubeinik, et al., Biorad. Antioks. 6 (2019).

  33. A. A. Mikhaylov, A. G. Medvedev, D. A. Grishanov, et al., Adv. Mater. Interfaces 6, 1900368 (2019). https://doi.org/10.1002/admi.201900368

    Article  CAS  Google Scholar 

  34. S. Chawla, H. Uppal, M. Yadav, et al., Ecotoxicol. Envir. Safety 135, 68 (2017). https://doi.org/10.1016/j.ecoenv.2016.09.017

    Article  CAS  Google Scholar 

  35. L. Rosenthal-Toib, K. Zohar, M. Alagem, and Y. Tsur, Chem. Eng. J. 136, 425 (2008). https://doi.org/10.1016/j.cej.2007.07.071

    Article  CAS  Google Scholar 

  36. M. Sun, W. Hao, C. Wang, and T. Wang, Chem. Phys. Lett. 443, 342 (2007). https://doi.org/10.1016/j.cplett.2007.06.098

    Article  CAS  Google Scholar 

  37. A. I. Shames, O. Lev, A. A. Mikhaylov, et al., J. Phys. Chem. C 123, 20884 (2019). https://doi.org/10.1021/acs.jpcc.9b04523

    Article  CAS  Google Scholar 

  38. S. Lindroos and M. Leskelä, Int. J. Inorg. Mater. 2, 197 (2000).

    Article  CAS  Google Scholar 

  39. S. A. Gromilov, D. A. Piryazev, and V.V. Tatarchuk, J. Struct. Chem. 62, 571 (2021). https://doi.org/10.1134/S0022476621040089

    Article  CAS  Google Scholar 

  40. V. Tatarchuk, I. Druzhinina, V. Zaikovskii, et al., Russ. J. Inorg. Chem. 62, 372 (2017). https://doi.org/10.1134/S00360236170030184

    Article  CAS  Google Scholar 

  41. V. V. Tatarchuk, I. A. Druzhinina, E. A. Maksimovskii, et al., Russ. J. Inorg. Chem. 65, 1264 (2020). https://doi.org/10.1134/S0036023620070219

    Article  CAS  Google Scholar 

  42. V. Tatarchuk, I. Druzhinina, E. Maksimovskii, and S. Gromilov, J. Coat. Technol. Res. 18, 205 (2021). https://doi.org/10.1007/s11998-020-00397-2

    Article  CAS  Google Scholar 

  43. V. Tatarchuk, I. Druzhinina, V. Zaikovskii, et al., J. Sol-Gel Sci. Technol 85, 66 (2018). https://doi.org/10.1007/s10971-017-4512-y

    Article  CAS  Google Scholar 

  44. A. I. Bulavchenko, A. T. Arymbaeva, M. G. Demidova, et al., Langmuir 34, 2815 (2018). https://doi.org/10.1021/acs.langmuir.7b04071

    Article  CAS  PubMed  Google Scholar 

  45. N. O. Shaparenko, A. T. Arymbaeva, M. G. Demidova, et al., Colloid J. 81, 478 (2019). https://doi.org/10.1134/S1061933X1904015X

    Article  CAS  Google Scholar 

  46. A. Wood, M. Giersig, M. Hilgendorff, et al., Aust. J. Chem. 56, 1051 (2003). https://doi.org/10.1071/CH03120

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.V. Antonova, B.A. Kolesov, and N.I. Alferova for recording the PL, Raman, and IR spectra, respectively.

Funding

The study was carried out in the framework of the state assignment of the Institute of Inorganic Chemistry, SB RAS, in the field of basic research (project no. 121031700315-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tatarchuk.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatarchuk, V.V., Gromilov, S.A., Maksimovskii, E.A. et al. Zinc Peroxide Nanoparticles: Micellar Synthesis and Preparation of Films. Russ. J. Inorg. Chem. 66, 1748–1760 (2021). https://doi.org/10.1134/S003602362111019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362111019X

Keywords:

Navigation