Skip to main content
Log in

Ceramics in the K2O–CaO–SO3–P2O5 System

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ceramics in the K2O–CaO–SO3–P2O5 system has been prepared from powder mixtures of potassium hydrogen sulfate KHSO4 and calcium hydroxyapatite Ca10(PO4)6(OH)2 at molar ratios KHSO4/Ca10(PO4)6(OH)2 = 2/1, 4/1, and 6/1. The powder mixtures were obtained in acetone under mechanical activation conditions using a planetary mill. After homogenization, the phase composition of powder mixtures included monetite CaHPO4, singenite K2Ca(SO4)2⋅H2O, and calcium hydroxyapatite Сa10(PO4)6(OH)2. After firing at 700–900°C the phase composition of ceramics manufactured from the powder mixtures included phases of potassium-substituted tricalcium phosphate Сa10K(PO4)7 and calciolangbeinite K2Ca2(SO4)3, as well as potassium sulfate K2SO4 at molar ratios KHSO4/Ca10(PO4)6(OH)2 = 4/1 and 6/1. Ceramic materials whose phase composition includes calciolangbeinite K2Ca2(SO4)3 and potassium-substituted tricalcium phosphate Сa10K(PO4)7 can be used as resorbable porous material for curing defects of bone tissue by regenerative medicine methods or as a matrix on designing luminescent/thermoluminescent materials. Ceramic materials in K2O–CaO–SO3–P2O5 system have been obtained for the first time, therefore, additional studies are necessary to determine the optimal phase ratio for the noted applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. S. Pina, V. P. Ribeiro, C. F. Marques, et al., Materials 12, 1824 (2019). https://doi.org/10.3390/ma12111824

    Article  CAS  PubMed Central  Google Scholar 

  2. N. K. Orlov, V. I. Putlayev, P. V. Evdokimov, et al., Inorg. Mater. 54, 500 (2018). https://doi.org/10.1134/S0020168518050096

    Article  CAS  Google Scholar 

  3. M. P. Chang, H. C. Hsu, W. H. Tuan, et al., J. Med. Biol. Eng. 37, 879 (2017). https://doi.org/10.1007/s40846-017-0253-1

    Article  Google Scholar 

  4. J. Zhou, C. Gao, P. Feng, et al., J. Porous Mater. 22, 1171 (2015). https://doi.org/10.1007/s10934-015-9993-x

    Article  CAS  Google Scholar 

  5. H. Y. Chang, Y. C. Chen, P. Y. Hsu, et al., Adv. Powder Technol. 31, 4180 (2020). https://doi.org/10.1016/j.apt.2020.08.023

    Article  CAS  Google Scholar 

  6. D. Freyer and W. Voigt, Monatsh. Chem. 134, 693 (2003). https://doi.org/10.1007/s00706-003-0590-3

    Article  CAS  Google Scholar 

  7. J. Zhou, F. Yuan, S. Peng, et al., Appl. Sci. 6, 411 (2016). https://doi.org/10.3390/app6120411

    Article  CAS  Google Scholar 

  8. D. Yang, Z. Yang, X. Li, et al., Ceram. Int. 31, 1021 (2005). https://doi.org/10.1016/j.ceramint.2004.10.016

    Article  CAS  Google Scholar 

  9. Z. Yang, D. A. Yang, and H. Zhao, Key Eng. Mater. 336, 1635 (2007). https://doi.org/10.4028/www.scientific.net/kem.336-338.1635

    Article  Google Scholar 

  10. A. G. Ostroff and R. T. Sanderson, J. Inorg. Nucl. Chem. 9, 45 (1959). https://doi.org/10.1016/0022-1902(59)80009-9

    Article  Google Scholar 

  11. N. C. Collier, Ceram.-Silik. 60, 338 (2016). https://doi.org/10.13168/cs.2016.0050

    Article  CAS  Google Scholar 

  12. M. P. Chang, Y. C. Tsung, H. C. Hsu, et al., Ceram. Int. 41, 1155 (2015). https://doi.org/10.1016/j.ceramint.2014.09.043

    Article  CAS  Google Scholar 

  13. S. T. Kuo, H. W. Wu, W. H. Tuan, et al., J. Mater. Sci: Mater. Med. 23, 2437 (2012). https://doi.org/10.1007/s10856-012-4704-5

    Article  CAS  Google Scholar 

  14. P. Y. Hsu, M. P. Chang, W. H. Tuan, et al., Ceram. Int. 44, 8934 (2018). https://doi.org/10.1016/j.ceramint.2018.02.088

    Article  CAS  Google Scholar 

  15. B. A. Dikici, S. Dikici, O. Karaman, et al., Biocybern. Biomed. Eng. 37, 733 (2017). https://doi.org/10.1016/j.bbe.2017.08.007

    Article  Google Scholar 

  16. Y. Iqbal and W. E. Lee, J. Am. Ceram. Soc. 82, 3584 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02282.x

    Article  CAS  Google Scholar 

  17. T. Safronova, V. Putlayev, and M. Shekhirev, Powder Metall. Met. Ceram. 52, 357 (2013). https://doi.org/10.1007/s11106-013-9534-6

    Article  CAS  Google Scholar 

  18. K. Ghosh, G. K. DasMohapatra, N. Soodbiswas, Phys. Chem. Glasses 44, 313 (2003). www.ingentaconnect.com/content/sgt/pcg/2003/00000044/00000004/ art00010

    CAS  Google Scholar 

  19. G. H. Ding, W. Xie, I. H. Jung, et al., Acta Phys.-Chim. Sin. 31, 1853 (2015). https://doi.org/10.3866/PKU.WHXB201508121

    Article  CAS  Google Scholar 

  20. M. H. Sandström and D. Boström, J. Chem. Thermodyn. 40, 40 (2008). https://doi.org/10.1016/j.jct.2007.06.006

    Article  CAS  Google Scholar 

  21. J. J. Rowe, G. W. Morey, and I. D. Hansen, J. Inorg. Nucl. Chem. 27, 53 (1965). https://doi.org/10.1016/0022-1902(65)80189-0

    Article  CAS  Google Scholar 

  22. H. B. Arceo and F. P. Glasser, Cem. Concr. Res. 20, 862 (1990). https://doi.org/10.1016/0008-8846(90)90047-2

    Article  Google Scholar 

  23. K. M. Eriksen, R. Fehrmann, G. Hatem, et al., J. Phys. Chem. 100, 10771 (1996). https://doi.org/10.1021/jp953744l

    Article  CAS  Google Scholar 

  24. ICDD (2010). PDF-4+ 2010 (Database), Ed. by Dr. Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA, USA, 2010). http://www.icdd.com/products/pdf2.htm

  25. V. Matović, S. Erić, A. Kremenović, et al., J. Cult. Herit. 13, 175 (2012). https://doi.org/10.1016/j.culher.2011.09.003

    Article  Google Scholar 

  26. T. V. Safronova, I. S. Sadilov, K. V. Chaikun, et al., Russ. J. Inorg. Chem. 64, 1088 (2019). https://doi.org/10.1134/S0036023619090171

    Article  CAS  Google Scholar 

  27. R. Fehrmann, N. H. Hansen, and N. J. Bjerrum, Inorg. Chem. 22, 4009 (1983). https://doi.org/10.1021/ic00168a038

    Article  CAS  Google Scholar 

  28. J. E. Diosa, R. A. Vargas, E. Mina, et al., Phys. Status Solidi 220, 641. https://doi.org/10.1002/1521-3951(200007)220:1<641::AID-PSSB641>3.0.CO;2-X

  29. J. T. Kloprogge, Z. Ding, W. N. Martens, et al., Thermochim. Acta 417, 143 (2004). https://doi.org/10.1016/j.tca.2003.12.001

    Article  CAS  Google Scholar 

  30. F. Radetzki, D. Wohlrab, A. Zeh, et al., Biomed. Mater. Eng 21, 307 (2011). https://doi.org/10.3233/BME-2012-0678

    Article  CAS  PubMed  Google Scholar 

  31. A. Pandey, R. G. Sonkawade, and P. D. Sahare, J. Phys. D: Appl. Phys. 35, 2744 (2002). https://doi.org/10.1088/0022-3727/35/21/309

    Article  CAS  Google Scholar 

  32. P. D. Sahare, J. S. Bakare, S. D. Dhole, et al., Radiat. Meas. 47, 1083 (2012). https://doi.org/10.1016/j.radmeas.2012.10.003

    Article  CAS  Google Scholar 

  33. A. Garcia, MachadoM. E. de Lima, M. L. B. Britto, et al., J. Health. Sci. Inst. 29, 89 (2011). www.unip.br/presencial/comunicacao/publicacoes/ics/ edicoes/2011/02_abr-jun/V29_n2_2011_p89-91.pdf

  34. I. V. Pekov, M. E. Zelenski, N. V. Zubkova, et al., Mineral. Mag. 76, 673 (2012). https://doi.org/10.1180/minmag.2012.076.3.16

    Article  CAS  Google Scholar 

  35. S. Yu. Oralkov, B. I. Lazoryak, and R. G. Aziev, Zh. Neorg. Khim. 33, 73 (1988).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using equipment purchased due to financial support from the Development Program of the Moscow State University.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 20-03-00550).

Author information

Authors and Affiliations

Authors

Contributions

T.V. Safronova formulated the aim of work, planned experiment, and wrote the text of the paper; M.M. Akhmedov suggested idea, prepared samples, and treated XRD data; T.B. Shatalova performed thermal analysis and interpreted its data; S.A. Tikhonova and G.K. Kazakova performed electron-microscopic study of prepared powders and ceramic samples. All the authors participated in results discussion.

Corresponding author

Correspondence to T. V. Safronova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This paper was published further to the Sixth Interdisciplinary Scientific Forum with the International Participation “Novel Materials and Promising Technology,” Moscow, November 23–26, 2020. https://n-materials.ru.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, T.V., Akhmedov, M.M., Shatalova, T.B. et al. Ceramics in the K2O–CaO–SO3–P2O5 System. Russ. J. Inorg. Chem. 66, 1057–1066 (2021). https://doi.org/10.1134/S0036023621080246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621080246

Keywords:

Navigation