Skip to main content
Log in

Structure and Electrical Properties of a New Zn-Substituted Oxygen Ion Conductor Based on BaLaInO4

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The BaLaIn0.9Zn0.1O3.95 phase with a Ruddlesden–Popper block layer structure (space group Pbca) was obtained for the first time and certified by X-ray diffraction. In a dry air atmosphere (pO2 = 0.21 atm, pH2O = 3.5 × 10−5 atm), the compound predominantly exhibited the oxygen ion type of conductivity. The acceptor doping of the BaLaInO4 cation sublattice with Zn2+ ions was found to induce an increase in the electrical conductivity due to the formation of oxygen vacancies in the structure. With increasing ionic radius of the dopant, the oxygen ion conductivity increased because of increasing free volume of the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. B. Goodenough, Annu. Rev. Mater. Res. 33, 91 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091651

    Article  CAS  Google Scholar 

  2. V. V. Kharton, F. M. B. Marques, and A. Atkinson, Solid State Ionics 174, 135 (2004). https://doi.org/10.1016/j.ssi.2004.06.015

    Article  CAS  Google Scholar 

  3. Perovskite Oxide for Solid Oxide Fuel Cells, Ed. by T. Ishihara (Springer Science Business Media, LLC, 2009). https://doi.org/10.1007/978-0-387-77708-5

  4. T. Ishihara, Encyclopedia of Applied Electrochemistry, Ed. by G. Kreysa, K. Ota, and R. F. Savinell (Springer, New York, 2014).https://doi.org/10.1007/978-1-4419-6996-5_165

  5. N. Mahato, A. Banerjee, A. Gupta, et al., Prog. Mater. Sci. 72, 141 (2015). https://doi.org/10.1016/j.pmatsci.2015.01.001

    Article  CAS  Google Scholar 

  6. D. Medvedev, A. Murashkina, E. Pikalova, et al., Prog. Mater. Sci. 60, 72 (2014). https://doi.org/10.1016/j.pmatsci.2013.08.001

    Article  CAS  Google Scholar 

  7. S. Kato, M. Ogasawara, M. Sugai, et al., Solid State Ionics 149, 53 (2002). https://doi.org/10.1016/S0167-2738(02)00138-8

    Article  CAS  Google Scholar 

  8. K. Fujii, M. Shiraiwa, and Y. Esaki, J. Mater. Chem. A 3, 11 985 (2015). https://doi.org/10.1039/C5TA01336D

    Article  CAS  Google Scholar 

  9. X. Yang, S. Liu, F. Lu, et al., J. Phys. Chem. 120, 6416. https://doi.org/10.1021/acs.jpcc.6b01530

  10. M. Shiraiwa, K. Fujii, Y. Esaki, et al., J. Electrochem. Soc. 164, F1392 (2017). https://doi.org/10.1149/2.0411713jes

    Article  CAS  Google Scholar 

  11. Yu. A. Titov, N. M. Belyavina, and V. Ya. Markiv, Rep. Nat. Acad. Sci. Ukraine 10, 160 (1999).

    Google Scholar 

  12. N. Tarasova, I. Animitsa, A. Galisheva, et al., Materials 12, 1668 (2019). https://doi.org/10.3390/ma12101668

    Article  CAS  PubMed Central  Google Scholar 

  13. G. R. Ren, J. Y. Zhu, L. Li, et al., J. Am. Ceram. Soc. 100, 2582 (2017). https://doi.org/10.1111/jace.14644

    Article  CAS  Google Scholar 

  14. J. C. Burley, P. D. Battle, P. Gaskell, et al., J. Solid State Chem. 168, 202 (2002). https://doi.org/10.1006/jssc.2002.9710

    Article  CAS  Google Scholar 

  15. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  16. F. A. Kröger and H. J. Vink, Solid State Phys. 3, 307 (1956). https://doi.org/S0081-1947(08)60135-6

    Article  Google Scholar 

  17. N. Tarasova, I. Animitsa, and A. Galisheva, J. Solid State Electrochem. 24, 1497 (2020). https://doi.org/10.1007/s10008-020-04630-1

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation (State Assignment no. AAAA-A20-120061990010-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tarasova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, N.A., Animitsa, I.E., Galisheva, A.O. et al. Structure and Electrical Properties of a New Zn-Substituted Oxygen Ion Conductor Based on BaLaInO4 . Russ. J. Inorg. Chem. 66, 108–112 (2021). https://doi.org/10.1134/S0036023621010095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621010095

Keywords:

Navigation