Skip to main content
Log in

Tantalum-Containing Bioactive Glass-Ceramics: A Mechanism of Suppression of the Biological Activity of the 45S5 Bioglass by Doping with Ta2O5

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Methods for the synthesis of radiopaque tantalum-containing glass and glass-ceramics by doping 45S5 bioglass with tantalum oxide are presented. Bioactive glass has been obtained by pyrolysis of a mixture of organic precursors: tetraethoxysilane, tributyl phosphate, sodium oleate, and calcium oleate. Bioglass has been doped with tantalum oxide by three different methods. The mechanism of suppression of the biological activity of materials with an increase in the Ta2O5 content has been studied. The bioactivity of samples containing 1–40 wt % Ta2O5 has been evaluated in vitro using a model medium—an SBF solution. The samples have been studied by 31P NMR, XRD, SEM, and EDS. A decrease in the concentration of calcium in the glass phase due to the formation of insoluble CaTa2O6 crystals has been considered the major cause of the suppression of the bioactivity of glasses. Samples containing up to 10 wt % Ta2O5 can be used in modern medicine as materials that restore bone tissue. The radiopaque substance in the composition of the biomaterial makes it possible to monitor the process of bone tissue regeneration. Samples containing more than 20 wt % Ta2O5 failed in vitro tests. Due to the dissolution of one of the phases of glass-ceramics in a model solution, the prognosis for the use of such materials in vivo is unfavorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Tankut, S. V. Dorozhkin, K. Omer, et al., Ceram. Int. 45, 22752 (2019). https://doi.org/10.1016/j.ceramint.2019.07.314

    Article  CAS  Google Scholar 

  2. D. N. Grishchenko, M. A. Medkov, E. K. Papynov, et al., Russ. J. Inorg. Chem. 65, 431 (2020). 10.1134/S003602362003005

    Article  CAS  Google Scholar 

  3. S. S. Prasad, I. Ratha, T. Adarsh, et al., J. Mater. Res. 33, 178 (2018). https://doi.org/10.1557/jmr.2017.442

    Article  CAS  Google Scholar 

  4. M. A. Medkov, D. N. Grishchenko, V. G. Kuryavyi, and A. B. Slobodyuk, Glass Ceram. 75, 322 (2018). https://doi.org/10.1007/s10717-018-0079-5

    Article  CAS  Google Scholar 

  5. N. Horandghadim, J. Khalil-Allafi, and M. Urgen, Mater. Sci. Eng. C 102, 683 (2019). https://doi.org/10.1016/j.msec.2019.05.005

    Article  CAS  Google Scholar 

  6. Y.-S. Sun and H. H. Huang, J. Alloys Compd., 743, 99 (2018). https://doi.org/10.1016/j.jallcom.2018.01.340

    Article  CAS  Google Scholar 

  7. M. H. Oh, N. Lee, H. Kim, et al., J. Am. Chem. Soc. 133, 5508 (2011). https://doi.org/10.1021/ja200120k

    Article  CAS  Google Scholar 

  8. K. S. Luk’yanenko, V. I. Apanasevich, A. V. Lagureva, et al., Tikhookeans. Med. Zh., No. 4, 38 (2016). https://doi.org/10.17238/PmJ1609-1175.2016.4.38-40

  9. E. Engels, S. Corde, S. McKinnon, et al., Phys. Med. 32, 1852 (2016). https://doi.org/10.1016/j.ejmp.2016.10.024

    Article  Google Scholar 

  10. F. Zamparini, F. Siboni, C. Prati, et al., Clin. Oral Investig. 23, 445 (2019). https://doi.org/10.1007/s00784-018-2453-7

    Article  Google Scholar 

  11. C. Marques, L. H. L. Louro, and M. H. Prado da Silva, Key Eng. Mater. 396398, 641. https://doi.org/10.4028/www.scientific.net/KEM.396-398.641

  12. M. Riaz, R. Zia, F. Saleemi, F. Bashir, et al., Mater. Sci. Poland 34, 13 (2016). https://doi.org/10.1515/msp-2016-0013

    Article  CAS  Google Scholar 

  13. A. Alhalawani and M. R. Towler, Mater. Charact. 114, 218 (2016). https://doi.org/10.1016/j.matchar.2016.03.004

    Article  CAS  Google Scholar 

  14. A. M. Alhalawani and M. R. Towler, Mater. Sci. Eng. C 72, 202 (2017). https://doi.org/10.1016/j.msec.2016.11.066

    Article  CAS  Google Scholar 

  15. A. M. Alhalawani, C. Mehrvara, W. Stonec, et al., Mater. Sci. Eng. C 71, 401 (2017). https://doi.org/10.1016/j.msec.2016.10.024

    Article  CAS  Google Scholar 

  16. T. Kokubo and H. Takadama, Biomaterials 27, 2907 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  17. M. A. Medkov, D. N. Grishchenko, E. E. Dmitrieva, and V. G. Kuryavyi, Khim. Tekhnol. 20, 299 (2019). https://doi.org/10.31044/1684-5811-2019-20-7-299-304

    Article  Google Scholar 

  18. D. S. Larionov, M. A. Kuzina, P. V. Evdokimov, et al., Russ. J. Inorg. Chem. 65, 312 (2020).

    Article  CAS  Google Scholar 

  19. A. P. Solonenko, A. I. Blesman, D. A. Polonyankin, and V. A. Gorbunov, Russ. J. Inorg. Chem. 63, 993 (2018).

    Article  CAS  Google Scholar 

  20. V. I. Putlyaev, Soros. Obraz. Zh. 8, 44 (2004). https://studylib.ru/doc/2355605/himiya-himiya-sovremennye-biokeramicheskie-materialy

  21. H. Eckert, J. Sol-Gel Sci. Technol. 88, 263 (2018). https://doi.org/10.1007/s10971-018-4795-7

    Article  CAS  Google Scholar 

Download references

Funding

The work was partially supported by the Program for Basic Research of the Far Eastern Branch of the RAS “Far East” (project no. 18-3-042) and in the framework of the Sate Assignment for the Institute of Chemistry, Far Eastern Branch, RAS (project no. 0265-2018-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Grishchenko.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishchenko, D.N., Slobodyuk, A.B., Kuryavyi, V.G. et al. Tantalum-Containing Bioactive Glass-Ceramics: A Mechanism of Suppression of the Biological Activity of the 45S5 Bioglass by Doping with Ta2O5 . Russ. J. Inorg. Chem. 65, 1606–1613 (2020). https://doi.org/10.1134/S0036023620100083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620100083

Keywords:

Navigation