Skip to main content
Log in

Hydrogen-Sorption Properties of La3 –xMgxCo9 (х = 1.2, 1.5, and 2) Intermetallic Compounds

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Magnesium-containing AB3 intermetallic compounds have increased (as compared to АВ5 compounds) hydrogen-sorption capacities and are candidate materials for metal-hydride accumulators and hydrogen compressors and for rechargeable nickel–metal-hydride batteries. We prepared and characterized La3– xMgxCo9 (x = 1.2, 1.5, and 2) intermetallic compounds in order to elucidate the effect from the replacement of lanthanum by magnesium in LaCo3 aimed at enhancing hydrogen-sorption properties. The hydrogen-sorption properties of alloys were studied at temperatures of 303–343 K and pressures of 0.1–25 atm; two hydride phases were shown to form. The maximal hydrogen capacity was found to be 0.62 ± 0.08 wt % for La1.8Mg1.2Co9, 0.30 ± 0.03 wt % for La1.5Mg1.5Co9, and 0.75 ± 0.09 wt % for LaMg2Co9. The unit cell volume was shown to increase upon hydriding by 13.8% for La1.8Mg1.2Co9 and 16.5% for LaMg2Co9. Hydrogen uptake curves were plotted for intermetallic compounds, and their comparative analysis was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. P. Tarasov, M. V. Lototskii, and V. A. Yartys’, Russ. J. Gen. Chem. 77, 694 (2007). https://doi.org/10.1016/j.ijhydene.2014.12.093

    Article  CAS  Google Scholar 

  2. B. P. Tarasov, Int. J. Hydrogen En. 36, 1196 (2011). https://doi.org/10.1016/j.ijhydene.2010.07.002

    Article  CAS  Google Scholar 

  3. B. P. Tarasov, M. S. Bocharnikov, Y. B. Yanenko, et al., Int. J. Hydrogen En. 43, 4415 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.086

    Article  CAS  Google Scholar 

  4. H. Yan, W. Xiong, L. Wang, et al., Int. J. Hydrogen En. 42, 2257 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.049

    Article  CAS  Google Scholar 

  5. K. Hubkowska, M. Soszko, M. Krajewski, et al., Electrochem. Commun. 100, 100 (2019). https://doi.org/10.1016/j.elecom.2019.02.007

    Article  CAS  Google Scholar 

  6. Z. Lodziana, A. Debski, G. Cios, et al., Int. J. Hydrogen En. 44, 1760 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.10

    Article  CAS  Google Scholar 

  7. S. Tai, H. Jie, M. De, et al., Int. J. Hydrogen En. 43, 17318 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.086

    Article  CAS  Google Scholar 

  8. T. Y. Wei, K. L. Lim, Y. S. Tseng, et al., Renew. Sustain. En. Rev. 79, 1122 (2017). https://doi.org/10.1016/j.rser.2017.05.132

    Article  CAS  Google Scholar 

  9. J. Liu, Z. Zheng, H. Cheng, et al., J. Alloys Compd. 731, 172 (2018). https://doi.org/10.1016/j.jallcom.2017.10.042

    Article  CAS  Google Scholar 

  10. M. Dymek, M. Nowak, M. Jurczyk, et al., J. Alloys Compd. 780, 697 (2019). https://doi.org/10.1016/j.jallcom.2018.11.196

    Article  CAS  Google Scholar 

  11. Y. Zhang, Y. Li, H. Shang, et al., Int. J. Hydrogen En. 43, 1643 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.112

    Article  CAS  Google Scholar 

  12. V. V. Burnasheva, B. P. Tarasov, and K. N. Semenenko, Zh. Neorg. Khim. 27, 3039 (1982).

    CAS  Google Scholar 

  13. Y. Ben Belgacem, C. Khaldi, and J. Lamloumi, Int. J. Hydrogen En. 42, 12797 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.143

    Article  CAS  Google Scholar 

  14. W. Liu, C. J. Webb, E.MacA. Gray, Int. J. Hydrogen En. 41, 3485 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.054

    Article  CAS  Google Scholar 

  15. G. Xin, H. Yuan, K. Yang, et al., Int. J. Hydrogen En. 41, 21261 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.259

    Article  CAS  Google Scholar 

  16. V. Yartys and R. Denys, J. Alloys Compd. 645, 412 (2015). https://doi.org/10.1016/j.jallcom.2014.12.091

    Article  CAS  Google Scholar 

  17. V. B. Son, Yu. Ya. Shimkus, B. P. Tarasov, et al., Mezhdunarodn. Nauch. Zh. Al’tern. En. Ekol., No. 21, 100 (2015). https://doi.org/10.15518/isjaee.2015.21.011

  18. V. B. Son, A. A. Volodin, B. P. Tarasov, et al., Russ. Chem. Bull. 65, 1971 (2016). https://doi.org/10.1007/s11172-016-1538-1

    Article  CAS  Google Scholar 

  19. V. N. Fokin, P. V. Fursikov, E. E. Fokina, et al., Russ. J. Inorg. Chem. 64, 1081 (2019). https://doi.org/10.1134/S0036023619090122

    Article  CAS  Google Scholar 

  20. V. N. Fokin, E. E. Fokina, and B. P. Tarasov, Russ. J. Inorg. Chem. 63, 1605 (2018). https://doi.org/10.1134/S0036023618120082

    Article  CAS  Google Scholar 

  21. J. Hassen, A. Luc, D. Walid, et al., J. Solid State Chem. 260, 73 (2018). https://doi.org/10.1016/j.jssc.2018.01.015

    Article  CAS  Google Scholar 

  22. L. Zhang, J. Wang, W. Du, et al., J. Alloys Compd. 653, 498 (2015). https://doi.org/10.1016/j.jallcom.2015.09.049

    Article  CAS  Google Scholar 

  23. L. Ouyang, J. Huang, H. Wang, et al., Mater. Chem. Phys. 200, 164 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.002

    Article  CAS  Google Scholar 

  24. A. A. Volodin, R. V. Denys, G. A. Tsirlina, et al., J. Alloys Compd. 645, 288 (2015). https://doi.org/10.1016/j.jallcom.2014.12.201

    Article  CAS  Google Scholar 

  25. A. A. Volodin, Ch.-B. Wan, R. V. Denys, et al. Int. J. Hydrogen En. 41, 9954 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.089

    Article  CAS  Google Scholar 

  26. Z. Lan, J. Li, B. Wei, et al., J. Rare Earths 34, 401 (2016). https://doi.org/10.1016/S1002-0721(16)60040-6

    Article  CAS  Google Scholar 

  27. X. Cai, F. Wei, X. Xu, et al., J. Rare Earths 34, 1235 (2016). https://doi.org/10.1016/S1002-0721(16)60159-X

    Article  CAS  Google Scholar 

  28. L. Zhang, S. Han, Y. Li, and J. Liu, Int. J. Hydrogen En. 38, 10431 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.129

    Article  CAS  Google Scholar 

  29. A. Kohta, I. Yoshiaki, and O. Masuo, J. Alloys Compd. 389, 215 (2005). https://doi.org/10.1016/j.jallcom.2004.05.081

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of Russian Federation (Agreement no. 05.574.21.0209; Unique Identifier RFMEFI57418X0209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Son.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, V.B., Tarasov, B.P. Hydrogen-Sorption Properties of La3 –xMgxCo9 (х = 1.2, 1.5, and 2) Intermetallic Compounds. Russ. J. Inorg. Chem. 65, 147–153 (2020). https://doi.org/10.1134/S0036023620020199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620020199

Keywords:

Navigation