Skip to main content
Log in

Soluble Cytotoxic Ruthenium(II) Complexes with 2-Hydrazinopyridine

  • Coordination Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

New water soluble Ru(II) binary complex [Ru(C5H7N3)(X)(H2O)2] with 2-hydrazinopyridine and its ternary complexes with X = dichloride, oxalate, malonate or pyrophosphate ligands have been synthesized. The complexes have been characterized using elemental analyses, mass, IR, and UV-Vis. spectroscopies, cyclic voltammetry, magnetic susceptibility, and thermal analysis. The complexes are diamagnetic and the electronic spectral data showed that peaks are due to low spin octahedral Ru(II) complexes. The optimized structures of the complexes 1–4 indicate distorted octahedral geometry with bond angles around the ruthenium atom ranged from 80.44° to 99.64°. The values of the electronic energies (−635 to −1145 a.u.), the highest occupied molecular orbital energies (−0.181 to 0.073 a.u.) and lowest unoccupied molecular orbital energies (−0.056 to 0.167 a.u.) indicate the stability of the complexes. The complexes are polarized as indicated from the dipole moment values (9.39–14.27 Debye). The complexes have noticeable cytotoxicity with IC50 (µM): 0.011–0.062 (HepG-2), 0.015–0.080 (MCF-7), 0.015–0.116 (HCT-116), and PC-3 (0.034–0.125).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Barragán, P. López-Senín, L. Salassa, et al., J. Am. Chem. Soc. 133, 14098 (2011). https://doi.org/10.1021/ja205235m

    Article  Google Scholar 

  2. P. S. Kuhn, V. Pichler, A. Roller, et al., Dalton Trans. 44(2), 659 (2015). https://doi.org/10.1039/C4DT01645A

    Article  CAS  Google Scholar 

  3. S. Leijen, S. A. Burgers, P. Baas, et al., Invest. New Drugs. 33(1), 201 (2015).

    Article  CAS  Google Scholar 

  4. J. Iida, E. T. Bell-Loncella, M. L. Purazo, et al., J. Transl. Med. 14, 48 (2016). https://doi.org/10.1186/s12967-016-0797-9

    Article  Google Scholar 

  5. K. M. Deo, B. J. Pages, D. L. Ang, et al., Int. J. Mol. Sci. 17, 1818 (2016). https://doi.org/10.3390/ijms17111818

    Article  Google Scholar 

  6. L. Salassa, Eur. J. Inorg. Chem. 32, 4931 (2011). https://doi.org/10.1002/ejic.201100376

    Article  Google Scholar 

  7. S. Leijen, S. A. Burgers, P. Baas, et al., Invest. New Drugs. 33(1), 201 (2015). https://doi.org/10.1007/s10637-014-0179-1

    Article  CAS  Google Scholar 

  8. R. E. Aird, J. Cummings, A. A. Ritchie, et al., Br. J. Cancer. 86, 1652 (2002). https://doi.org/10.1038/sj/bjc/6600290

    Article  CAS  Google Scholar 

  9. L. Zeng, Y. Chen, Ji. Liu, et al., Sci. Rep. 6, 19449 (2016). https://doi.org/10.1038/srep19449

    Article  CAS  Google Scholar 

  10. K. D. Mjos, and C. Orvig, Chem. Rev. 114, 4540 (2014). https://doi.org/10.1021/cr400460s

    Article  CAS  Google Scholar 

  11. J. F. Kou, C. Qian, J. Q. Wang, et al., J. Biol. Inorg. Chem. 17, 81 (2012). https://doi.org/10.1007/s00775-011-0831-6

    Article  CAS  Google Scholar 

  12. F. Li, J. G. Collins, and F. R. Keene, Chem. Soc. Rev. 44, 2529 (2015). https://doi.org/10.1039/C4CS00343H

    Article  CAS  Google Scholar 

  13. H. Song, J. T. Kaiser, and J. K. Barton, Nat. Chem. 4, 615 (2012). https://doi.org/10.1038/nchem.1375

    Article  CAS  Google Scholar 

  14. A. Levina, A. Mitra, and P. A. Lay, Metallomics 1, 458 (2009). https://doi.org/10.1039/b904071d

    Article  CAS  Google Scholar 

  15. C. Qian, J. Q. Wang, C. L. Song, et al., Metallomics 5, 844 (2013). https://doi.org/10.1039/c3mt20270d

    Article  CAS  Google Scholar 

  16. T. A. Bhat, S. Kumar, A. K. Chaudhary, et al., Drug Discovery Today. 20, 635 (2015).

    Article  CAS  Google Scholar 

  17. S. F. Georg, Dalton Trans. 39, 1673 (2010). https://doi.org/10.1039/B916860P

    Article  Google Scholar 

  18. O. A. Lenis-Rojas, A. R. Fernándes, C. R. Rodrigues, et al., Dalton Trans. 45, 19127 (2016).

    Article  CAS  Google Scholar 

  19. R. H. Berndsen, A. Weiss, U. K. Abdul, et al., Sci. Rep. 22(7), 43005 (2017). https://doi.org/10.1038/srep43005

    Article  Google Scholar 

  20. C. S. Allardyce, and P. J. Dyson, Dalton Trans. 45, 3201 (2016). https://doi.org/10.1039/c5dt03919c

    Article  CAS  Google Scholar 

  21. L. Salassa et al., Organometallics 29, 6703 (2010), https://doi.org/10.1021/om100734y

    Article  CAS  Google Scholar 

  22. A. A. Soliman, O. I. Alajrawy, F. A. Attabi, and W. Linert, New J. Chem. 40, 8342 (2016). https://doi.org/10.1039/C6NJ01262K

    Article  CAS  Google Scholar 

  23. A. A. Soliman, O. I. Alajrawy, F. A. Attabi, and W. Linert, Spectrochim. Acta A. 152, 358 (2016).

    Article  CAS  Google Scholar 

  24. A. A. Soliman, O. I. Alajrawy, F. A. Attabi, et al., J. Mol. Struct. 1115, 17 (2016).

    Article  CAS  Google Scholar 

  25. M. M. Elaasser, M. M. Abdel-Aziz and R. A. El-Kassas, J. Microbiol. Biotech. Res. 1(4), 5 (2011).

    CAS  Google Scholar 

  26. P. S. Hallman, T. A. Stephenson, and G. Wilkinson, Inorg. Synth. 12, 237 (1970).

    CAS  Google Scholar 

  27. J. A. Broomhead, and C. G. Young, Inorg. Synth. 28, 338 (1990).

    CAS  Google Scholar 

  28. A. T. Vu, D. A. Santos, J. G. Hale, and R. N. Garner, Inorg. Chim. Acta 450, 23 (2016).

    Article  CAS  Google Scholar 

  29. B. P. Sullivan, D. J. Salmon, and T. J. Meyer, Inorg. Chem. 17(12), 3334 (1978).

    Article  CAS  Google Scholar 

  30. A. A. Soliman, M. A. Amin, A. A. El-Sherif, et al., Arab. J. Chem. 10, 389 (2017).

    Article  CAS  Google Scholar 

  31. N. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (New York, Wiley, 1986).

    Google Scholar 

  32. B. S. Kim, S. H. Kim, Y. S. Kim, S et al., Mol. Cryst. Liquid Cryst. 504, 173 (2009).

    Article  CAS  Google Scholar 

  33. H. Bih, I. Saadoune, and M. Mansori, J. Conden. Mater. 7(1), 74 (2006).

    Google Scholar 

  34. Y. Makhkhas, S. Aqdim, and E. Sayouty, J. Mater. Sci. Chem. Engineer. 1, 1 (2013).

    CAS  Google Scholar 

  35. R. Essehli, B. El Bali, M. Lachkar, et al., Acta Cryst. 62, 538 (2006).

    Google Scholar 

  36. N. G. Armatas, G. D. Allis, A. Prosvirin, et al., Inorg. Chem. 47, 832 (2008).

    Article  CAS  Google Scholar 

  37. R. P. Bush, Platinum Met. Rev. 35(4), 202 (1991).

    CAS  Google Scholar 

  38. C. Sahin, A. Goren, and C. Varlikli, Synthesis, J. Organomet. Chem. 772–773, 68 (2014). https://doi.org/10.1016/j.jorganchem.2014.08.031

    Article  Google Scholar 

  39. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed. (Elsevier, Amsterdam, 1984).

    Google Scholar 

  40. G. C. Pellacani, and W. D. D. Malavasi, J. Inorg. Nucl. Chem. 37, 477 (1975).

    Article  CAS  Google Scholar 

  41. R. A. Palmer, and T. S. Piper, Inorg. Chem. 5, 864 (1966).

    Article  CAS  Google Scholar 

  42. C. E. Housecroft, and A. G. Sharpe, Inorganic Chemistry, 2nd ed. (Pearson, England, 2005).

    Google Scholar 

  43. A. A. Soliman, M. M. Khattab, and R. M. Ramadan, Trans. Met. Chem. 32, 325 (2007).

    Article  CAS  Google Scholar 

  44. S. A. Ali, A. A. Soliman, M. M. Aboli, and R. M. Ramadan, J. Coord. Chem. 55, 1161 (2002).

    Article  CAS  Google Scholar 

  45. H. H. Horowitz, and G. Metzger, Anal. Chem. 35(10), 1464 (1963).

    Article  CAS  Google Scholar 

  46. A. W. Coats, and J. P. Redfern, Nature 201, 68 (1964).

    Article  CAS  Google Scholar 

  47. A. A. Soliman, M. E. Samir, and A. M. Omyma Ali, J. Therm. Anal. Calorim. 83, 385 (2006).

    Article  CAS  Google Scholar 

  48. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  49. R. Robinson, Jr., K. K. Abbasi, A. Ariafard, et al., Inorg. Chem. 54(2), 534 (2015). https://doi.org/10.1021/ic502298j

    Article  CAS  Google Scholar 

  50. F. Caruso, M. Rossi, A. Benson, et al., J. Med. Chem. 55, 1072 (2012).

    Article  CAS  Google Scholar 

  51. I. Warad, M. Al-Noaimi, O. S. Abdel-Rahman, et al., Spectrochim. Acta A 117, 250 (2014).

    Article  CAS  Google Scholar 

  52. S. D. Inglez, F. C. A. Lima, M. R. Camilo, et al., J. Braz. Chem. Soc. 21, 157 (2010).

    Article  CAS  Google Scholar 

  53. S. H. Dale, and M. R. J. Elsegoodb, Acta Cryst. C 62, 166 (2006).

    Article  Google Scholar 

  54. R. Robinson Jr., M. F. Shaw, R. Stranger, and B. F. Yates, Dalton Trans. 45, 1047 (2016). https://doi.org/10.1039/c5dt03600c

    Article  CAS  Google Scholar 

  55. A. C. Tsipis, Coord. Chem. Rev. 272, 1 (2014). https://doi.org/10.1016/j.ccr.2014.02.023

    Article  CAS  Google Scholar 

  56. S. J. Sabounchei, P. Shahriary, S. Salehzadeh, et al., Spectrochim. Acta A 135, 1019 (2015).

    Article  CAS  Google Scholar 

  57. L. Mazur, B. Modzelewska-Banachiewicz, R. Paprocka, et al., J. Inorg. Biochem. 114, 55 (2012).

    Article  CAS  Google Scholar 

  58. F. Neese, Coord. Chem. Rev. 253, 526 (2009).

    Article  CAS  Google Scholar 

  59. A. M. Mansour, Inorg. Chim. Acta. 394, 436 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soliman.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, A.A., Attaby, F.A., Alajrawy, O.I. et al. Soluble Cytotoxic Ruthenium(II) Complexes with 2-Hydrazinopyridine. Russ. J. Inorg. Chem. 64, 742–754 (2019). https://doi.org/10.1134/S0036023619060020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619060020

Keywords

Navigation