Skip to main content
Log in

Manganese Pnictides MnP, MnAs, and MnSb are Ferromagnetic Semimetals: Preparation, Structure, and Properties (a Survey)

  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Manganese pnictides MnP, MnAs, and MnSb are ferromagnetic semimetals and have some unique properties, namely, high Curie points, considerable magnetic anisotropy, and giant magnetocaloric effect. Experimental and theoretical studies showed that these compounds can enter a superconducting state under high external pressures. Manganese pnictides are widely used in design of hybrid structures, such as spin diodes and transistors, in combination with semiconductors. The survey focuses on the design and properties of such the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Takei, D. E. Cox, and G. Shirane, Phys. Rev. 129, 2008 (1963).

    Article  CAS  Google Scholar 

  2. T. Chen, G. B. Charlan, and R. C. Keezer, J. Cryst. Growth 37, 29 (1977).

    Article  CAS  Google Scholar 

  3. O. Rader, A. Kimura, and N. Kamakura, et al., Phys. Rev. B 57, R689 (1998).

    Article  CAS  Google Scholar 

  4. J. W. Allen and W. Stutius, Sol. State. Commun. 20, 561 (1976).

    Article  CAS  Google Scholar 

  5. C. P. Bean and D. S. Rodbell, Phys. Rev. 126, 104 (1962).

    Article  CAS  Google Scholar 

  6. J. J. Berry, S. J. Potashnik, S. H. Chun, et al., Phys. Rev. B 64, 0524081 (2001).

    Article  CAS  Google Scholar 

  7. M. S. Reis, R. M. Rubinger, N. A. Sobolev, et al., Phys. Rev. 77, 1044391 (2008).

    Google Scholar 

  8. E. E. Huber and D. H. Ridgley, J. Appl. Phys. 34, 1099 (1963).

    Article  CAS  Google Scholar 

  9. R. R. Heikes, Phys. Rev. 99, 446 (1955).

    Article  CAS  Google Scholar 

  10. Y. B. Yang, K. Kamaraju, W. B. Yelon, et al., Appl. Phys. Lett. 79, 1846 (2001).

    Article  CAS  Google Scholar 

  11. T. Hanna, D. Yoshida, and H. Munekata, J. Cryst. Growth 323, 383 (2011).

    Article  CAS  Google Scholar 

  12. D. H. Mosca, F. Vidal, and V. H. Etgenes, Phys. Rev. Lett. 101, 1255031 (2008).

    Article  CAS  Google Scholar 

  13. X. Moya, S. Kar-Narayan, and N. D. Mathur, Nature Mater. 13, 439 (2014).

    Article  CAS  Google Scholar 

  14. Y. Choi, X. Jiang, W. Bi, et al., Phys. Rev. B 94, 184431 (2016).

    Article  Google Scholar 

  15. R. A. Booth and S. A. Majetich, J. Appl. Phys. 105, A9261 (2009).

    Article  CAS  Google Scholar 

  16. W. Van Roy, R. F. B. Roelfsema, Z. Liu, et al., J. Cryst. Growth 227–228, 852 (2001).

    Google Scholar 

  17. J. Kwon, R. E. Goacher, E. D. Fraser, et al., J. Low Temp. Phys. 169, 377 (2012).

    Article  CAS  Google Scholar 

  18. J.-G. Cheng, K. Matsubayashi, W. Wu, et al., Phys. Rev. Lett. 114, 1170011 (2015).

    Google Scholar 

  19. X. Y. Chong, Y. Jiang, R. Zhou, and J. Feng, Sci. Repts 6, 21821 (2016).

    Article  CAS  Google Scholar 

  20. H. Okamoto, Bull. Alloy Phase Diagrams 10, 549 (1989).

    Article  CAS  Google Scholar 

  21. M. F. Hagedorn and W. Jeitschko, J. Solid State Chem. 119, 344 (1995).

    Article  CAS  Google Scholar 

  22. Phase Diagrams of Binary Metal Systems. Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].

  23. S. F. Marenkin, A. N. Aronov, I. V. Fedorchenko, et al., Inorg. Mater. 543, 863 (2018).

    Article  Google Scholar 

  24. F. C. Nascimento, A. O. Santos, A. de Campos, et al., Mater. Res. 9, 111 (2006).

    Article  CAS  Google Scholar 

  25. L. Pytlik and A. Zieba, J. Magn. Magn. Mater. 51, 199 (1985).

    Article  CAS  Google Scholar 

  26. N. Menyuk, J. A. Kafalas, K. Dwight, and J. B. Goodenough, Phys. Rev. 177, 942 (1969).

    Article  CAS  Google Scholar 

  27. A. Zieba, Y. Shapira, and S. Foner, Phys. Lett. A 91, 243 (1982).

    Article  Google Scholar 

  28. H. Wada and Y. Tanabe, Appl. Phys. 79, 3302 (2001).

    CAS  Google Scholar 

  29. V. I. Mitsiuk, N. Yu. Pankratov, G. A. Govor, et al., Phys. Solid State 54, 1865 (2012).

    Article  CAS  Google Scholar 

  30. G. A. Govor, Phys. Solid State 57, 871 (2015).

    Article  CAS  Google Scholar 

  31. J. H. Westbrook, R. L. Fleischer, K. A. Gschneidner, Jr., and V. K. Pecharsky Intermetallic Compounds -Principles and Practice: Progress (Wiley, Chichester, 2002), Vol.3.

  32. C. Borschel, M. E. Messing, M. T. Borgström, et al., Nano Lett. 11, 3935 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. S. Sanvito and N. A. Hill, Phys. Rev. B 62, 15553 (2000).

    Article  CAS  Google Scholar 

  34. Y. Takagaki, E. Wiebicke, E. Wiebicke, et al., J. Solid State. Chem. 179, 2271 (2006).

    Article  CAS  Google Scholar 

  35. K.-J. Friedland, M. Kastner, and L. Daweritz, Phys. Rev. B 67, 1133011 (2003).

    Article  CAS  Google Scholar 

  36. Y. Takagaki and K.-J. Friedland, J. Appl. Phys. 101, 1139161 (2007).

    Google Scholar 

  37. C. Helman, J. Milano, L. Steren, and A. M. Llois, J. Magn. Magn. Mater. 320, e415 (2008).

    Article  CAS  Google Scholar 

  38. O. Gitfleisch, M. A. Willard, E. Bruck, et al., Adv. Mater. 23, 821 (2011).

    Article  CAS  Google Scholar 

  39. C. Spezzani, E. Ferrari, E. Allaria, et al., Phys. Rev. Lett. 113, 247202 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. J. Hubmann, B. Bauer, H. S. Korner, et al., Nano Lett 16, 900 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. G. C. Han, C. K. Ong, and T. Y. F. Liew, J. Magn. Magn. Mater. 192, 233 (1999).

    Article  CAS  Google Scholar 

  42. M. Mizuguchi, H. Akinaga, K. Ono, and M. Oshima, Appl. Phys. Lett. 76, 1743 (2000).

    Article  CAS  Google Scholar 

  43. P. Singh, Mater. Lett. 7, 293 (1988).

    Article  CAS  Google Scholar 

  44. I. Teramoto and A. M. J. G. Van Run, J. Phys. Chem. Solids 29, 347 (1968).

    Article  CAS  Google Scholar 

  45. J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1999).

    Google Scholar 

  46. A. E. Taylor, T. Berlijn, S. E. Hahn, et al., Phys. Rev. B 91, 224181 (2015).

    Google Scholar 

  47. P. Kainzbauer, K. W. Richter, and H. Ipser, J. Phase Eq. Diff. 37, 459 (2016).

    Article  CAS  Google Scholar 

  48. V. S. Goncharov and V. M. Ryzhkovskii, Pis’ma Zh. Tekh. Fiz. 27, 39 (2001).

    Google Scholar 

  49. R. Podloucky, Solid State Commun. 50, 763 (1984).

    Article  CAS  Google Scholar 

  50. O. Rader, A. Kimura, N. Kamakura, et al., Phys. Rev. B 57, R689 (1998).

    Article  CAS  Google Scholar 

  51. W. Albers and C. Haas, Phys. Lett. A 8, 300 (1964).

    Article  CAS  Google Scholar 

  52. W. Braun, A. Trampert, V. M. Kaganer, et al., J. Cryst. Growth 301–302, 50 (2007).

    Article  CAS  Google Scholar 

  53. H. Akinaga, M. Mizuguchi, K. Ono, and M. Oshima, Appl. Phys. Lett. 76, 2600 (2000).

    Article  CAS  Google Scholar 

  54. M. Mizuguchi, H. Akinaga, K. Ono, and M. Oshima, J. Appl. Phys. 87, 5639 (2000).

    Article  CAS  Google Scholar 

  55. P. J. Mousley, C. W. Burrows, and M. J. Ashwin, Phys. Status Solidi B 254, 1600503 (2017).

    Article  CAS  Google Scholar 

  56. N. Nishizawa and H. Munekata, J. Cryst. Growth 378 418 (2013).

    Article  CAS  Google Scholar 

  57. O. V. Vykhrova, Y. A. Danilov, M. V. Dorokhin, et al., Bull. Russ. Acad. Sci.: Phys. 77, 69 (2013).

    Article  CAS  Google Scholar 

  58. M. Mizuguchi, H. Akinaga, K. Ono, and M. Oshima, J. Magn. Magn. Mater. 226–230, 1838 (2001).

    Article  Google Scholar 

  59. H. Akinaga, J. Magn. Magn. Mater. 239, 145 (2002).

    Article  CAS  Google Scholar 

  60. C. Spezzani, E. Ferrari, E. Allaria, et al., Phys. Rev. Lett. 113, 247202 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. T. Amemiya, Y. Ogawa, H. Shimizu, et al., Appl. Phys. Express 1, 0220021 (2008).

    Article  CAS  Google Scholar 

  62. H. Zhang, S. S. Kushvaha, S. Chen, et al., Appl. Phys. Lett. 90, 202503 (2007).

    Article  CAS  Google Scholar 

  63. C. W. Burrows, A. Dobbie, M. Myronov, et al., Cryst. Growth Des. 13, 4923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. M. A. Hettiarachchi, E. Abdelhamid, B. Nadgorny, and S. L. Brock, J. Mater. Chem. C 4, 6790 (2016).

    Article  CAS  Google Scholar 

  65. J. D. Aldous, C. W. Burrows, I. Maskery, et al., J. Phys.: Condens. Matter 24, 1460021 (2012).

    Google Scholar 

  66. H. Zhang, S. S. Kushvaha, A. T. S. Wee, and X. Wang, J. Appl. Phys. 102, 0239061 (2007).

    Google Scholar 

  67. S. S. Kushvaha, H. L. Zhang, Z. Yan, et al., Thin Solid Films 520, 6909 (2012).

    Article  CAS  Google Scholar 

  68. A. I. Ril’, S. F. Marenkin, and A. D. Izotov, Proceedings of the II International Scientific and Practical Conference (Zvenigorod, 2017), p.49.

    Google Scholar 

  69. T. Dietl, K. Sato, T. Fukushima, et al., Rev. Mod. Phys. 87, 1311 (2015).

    Article  CAS  Google Scholar 

  70. M. Tanaka, J. P. Harbison, M. C. Park, et al., J. Appl. Phys. 76, 6278 (1994).

    Article  CAS  Google Scholar 

  71. J. De Boeck, R. Oesterholt, A. Van Esch, et al., Appl. Phys. Lett. 68, 2744 (1995).

    Article  Google Scholar 

  72. J. De Boeck and R. Oesterholt, J. Magn. Magn. Mater. 156, 148 (1995).

    Article  Google Scholar 

  73. C. Borschel, M. E. Messing, M. T. Borgström, et al., Nano Lett. 11, 3935 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. M. Khalid, S. Prucnal, M. Liedke, et al., Mater. Res. Express 1, 026105 (2014).

    Article  CAS  Google Scholar 

  75. K. M. Yu, W. Walukiewicz, T. Wojtowicz, et al., Phys. Rev. B 65, 201331 (2002).

    Google Scholar 

  76. A. Kwiatkowski, D. Wasik, M. Kaminska, et al., J. Appl. Phys. 101, 1139121 (2007).

    Article  CAS  Google Scholar 

  77. K. Y. Wang, M. Sawicki, K. W. Edmonds, et al., Appl. Phys. Lett. 88, 0225101 (2006).

    Google Scholar 

  78. M. Yokoyama, H. Yamaguchi, T. Ogawa, and M. Tanaka, J. Appl. Phys. 97, D3171 (2005).

    Article  CAS  Google Scholar 

  79. F. L. Bloom, A. C. Young, R. C. Myers, et al., J. Vacuum Sci. Technol. B: Microelectronics Nanometer Struct. 24, 1639 (2006).

    Article  CAS  Google Scholar 

  80. A. J. Blattner and B. W. Wessels, Appl. Surface Sci. 221, 155 (2004).

    Article  CAS  Google Scholar 

  81. A. V. Alaferdov, Y. A. Danilov, A. V. Kudrin, et al., Smart Nanoobjects: Synthesis and Characterization (Nova, 2013).

    Google Scholar 

  82. H. Yoshizawa, H. Toyota, S. Nakamura, et al., Thin Solid Films 622, 136 (2017).

    Article  CAS  Google Scholar 

  83. K. Kabamoto, R. Kodaira, and S. Hara, J. Cryst. Growt 464, 80 (2017).

    Article  CAS  Google Scholar 

  84. M. E. Islam and M. Akabori, J. Cryst. Growth 463, 86 (2017).

    Article  CAS  Google Scholar 

  85. M. Tanaka, Semicond. Sci. Technol. 17, 327 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Marenkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marenkin, S.F., Kochura, A.V., Izotov, A.D. et al. Manganese Pnictides MnP, MnAs, and MnSb are Ferromagnetic Semimetals: Preparation, Structure, and Properties (a Survey). Russ. J. Inorg. Chem. 63, 1753–1763 (2018). https://doi.org/10.1134/S0036023618140036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618140036

Keywords

Navigation