Skip to main content
Log in

Sensor activity with respect to alkali metals of a carbon nanotube edge-modified with amino group

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The work is devoted to the theoretical study of sensor activity of nanosystems based on a carbon nanotube modified with a functional amino group, with respect to certain metal atoms and ions. The calculations were performed within the molecular cluster model using the semiempirical MNDO scheme and density functional theory DFT. The mechanism of attachment of an amino group to the open edge of zigzag single-walled carbon nanotubes possessing cylindrical symmetry was studied to design a chemically active sensor based on them. The key geometric and electron-energy characteristics of the constructed systems have been determined. The interaction of the sensors thus constructed with atoms and ions of some metals—potassium, sodium, and lithium—has been studied. The scanning of arbitrary surfaces containing selected atoms or ions has been modeled; from the interaction energies, and the activity of the single-walled carbon nanotube + amino group probe system has been determined with respect to the selected elements to be initialized. Analysis of the charge state of the system has established that the sensor action mechanism is realized, as a result of which the number of charge carriers in the resulting nanotubular system serving as a sensor probe changes, which provides the appearance of conductivity in the system. The presence of metallic atoms can be experimentally detected by the change in the potential in a probe system based on a nanotube with a functional group. The theoretical studies have proved the possibility of creating highly sensitive sensors based on the most promising nanomaterial— carbon nanotubes functionalized with active chemical groups, including the amino group NH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1999).

    Google Scholar 

  2. P. J. F. Harris, Carbon Nanotubes and Relative Structures. New Materials of Twenty-First Century (Cambridge Univ. Press, New York, 1999).

    Book  Google Scholar 

  3. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Application (Springer, Berlin, 2000).

    Book  Google Scholar 

  4. I. V. Zaporotskova, Carbon and Non-Carbon Nanomaterials and Composite Structures Based on Them: Structure and Electronic Properties (Izd. VolGU, Volgograd, 2009) [in Russian].

    Google Scholar 

  5. P. N. D’yachkov, Electronic Properties and Application of Carbon Nanotubes (BINOM, Moscow, 2010) [in Russian].

    Google Scholar 

  6. I. V. Zaporotskova, Nanotekhnika, No. 4, 21 (2005).

    Google Scholar 

  7. A. V. Eletskii, Usp. Fiz. Nauk 174, 1191 (2004).

    Article  Google Scholar 

  8. K. F. Akhmadishina, I. I. Bobrinetskii, I. A. Komarov, et al., Ros. Nanotekhnol. 8, 35 (2013).

    Google Scholar 

  9. W.-D. Zhang and W.-H. Zhang, J. Sensors ID 160698 (2009).

    Google Scholar 

  10. S. Chopra, A. Pham, J. Gaillard, et al., Appl. Phys. Lett. 80, 4632 (2000).

    Article  Google Scholar 

  11. S. Ghosh, A. K. Sood, and N. Kumar, Science 299, 1042 (2003).

    Article  CAS  Google Scholar 

  12. S. N. Kim, J. F. Rusling, and F. Papadimitraopoulos, Adv. Mater., 19 (2007).

    Google Scholar 

  13. Q. Cao and J. A. Rogers, Adv. Mater. 21, 29 (2009).

    Article  CAS  Google Scholar 

  14. H.-L. Hsu, J.-M. Jehng, Y. Sung, et al., Mater. Chem. Phys. 109, 148 (2008).

    Article  CAS  Google Scholar 

  15. S. Mubeen, T. Zhang, B. Yoo, et al., J. Phys. Chem. C 111, 6321 (2007).

    Article  CAS  Google Scholar 

  16. T. Zhang, S. Mubeen, E. Bekyarova, et al., Nanotechnology 18, 6 (2007).

    Google Scholar 

  17. E. H. Espinosa, R. Ionescu, B. Chambon, et al., Sens. Actuat. B 127, 137 (2007).

    Article  CAS  Google Scholar 

  18. S. S. Wong, E. Josevlevich, A. T. Wooley, et al., Nature, 394 (1998).

    Google Scholar 

  19. J. Maklin, T. Mustonen, K. Kordas, et al., Phys. Stat. Solidi B 244, 4298 (2007).

    Article  CAS  Google Scholar 

  20. D. Fu, H. Lim, Y. Shi, et al., J. Phys. Chem. C 112, 650 (2008).

    Article  CAS  Google Scholar 

  21. T. H. Tran, et al., Sens. Actuat. B 129, 67 (2008).

    Article  CAS  Google Scholar 

  22. I. V. Zaporotskova, N. P. Polikarpova, and D. E. Vil’keeva, Nanosci. Nanotechnol. Lett. 5, 1169 (2013).

    Article  CAS  Google Scholar 

  23. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).

    Article  CAS  Google Scholar 

  24. M. J. S. Dewar and W. Thiel, Theor. Chem. Acta 46, 89 (1977).

    Article  CAS  Google Scholar 

  25. V. Kon, Usp. Fiz. Nauk 172, 336 (2002).

    Article  Google Scholar 

  26. K. Burke, J. Werschnik, and E. K. U. Gross, J. Chem. Phys. 123, 062206 (2005).

    Article  Google Scholar 

  27. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zaporotskova.

Additional information

Original Russian Text © I.V. Zaporotskova, L.V. Kozhitov, N.P. Boroznina, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 11, pp. 1464–1469.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaporotskova, I.V., Kozhitov, L.V. & Boroznina, N.P. Sensor activity with respect to alkali metals of a carbon nanotube edge-modified with amino group. Russ. J. Inorg. Chem. 62, 1458–1463 (2017). https://doi.org/10.1134/S0036023617110213

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617110213

Navigation