Skip to main content
Log in

Gold(III) ionic complexes [Au{S2CN(C2H5)2}2]Cl and ([Au{S2CN(C2H5)2}2][AuCl4]) n : Synthesis, supramolecular self-assembly, polymorphism, and thermal behavior

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A heterogeneous reaction between freshly precipitated oxovanadium(IV) diethyldithiocarbamate [VO{S2CN(C2H5)2}2] and a solution of AuCl3 in 2 M HCl has been shown to yield two ionic gold(III) compounds: the water-soluble ionic complex [Au{S2CN(C2H5)2}2]Cl (I) and the coordination polymer ([Au{S2CN(C2H5)2}2][AuCl4]) n (II), which was preparatively separated from the precipitate phase. The molecular and crystal structures of the synthesized complexes have been established by X-ray diffraction. The crucial role in the supramolecular self-assembly of the compounds obtained belongs to C-H⋯Cl hydrogen bonds (in I) and Au⋯S and Au⋯Cl secondary interactions (in II). Polymeric complex II has been found to be able to form two polymorphs, which differ from each other by the building mode of cation-anion polymeric chains. The study of the thermal behavior of the synthesized complexes by simultaneous thermal analysis in an argon atmosphere has allowed us to recognize conditions for the recovery of bound gold. In both cases, reduced metallic gold is the only final thermolysis product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hogarth, Prog. Inorg. Chem. 53, 71 (2005).

    Article  CAS  Google Scholar 

  2. D. C. Onwudiwe, C. Strydom, O. S. Oluwafemi, and S. P. Songca, Mater. Res. Bull. 47, 4445 (2012).

    Article  CAS  Google Scholar 

  3. M. Saravanan, K. Ramalingam, G. Bocelli, and R. Olla, Appl. Organomet. Chem. 18, 103 (2004).

    Article  CAS  Google Scholar 

  4. A. S. R. Chesman, J. van Embden, N. W. Duffy, et al., Cryst. Growth Des. 13, 1712 (2013).

    Article  CAS  Google Scholar 

  5. N. Srinivasan, Superlatt. Microstruct. 65, 227 (2014).

    Article  CAS  Google Scholar 

  6. T. A. Rodina, A. V. Ivanov, A. V. Gerasimenko, et al., Polyhedron 40, 53 (2012).

    Article  CAS  Google Scholar 

  7. T. A. Rodina, A. V. Ivanov, and A. V. Gerasimenko, Russ. J. Coord. Chem. 40, 100 (2014).

    Article  CAS  Google Scholar 

  8. O. V. Loseva, T. A. Rodina, and A. V. Ivanov, Russ. J. Coord. Chem. 39, 463 (2013).

    Article  CAS  Google Scholar 

  9. A. V. Ivanov, O. V. Loseva, T. A. Rodina, et al., Dokl. Phys. Chem. 452, 223 (2013).

    Article  CAS  Google Scholar 

  10. T. A. Rodina, O. V. Loseva, A. V. Gerasimenko, and A. V. Ivanov, Russ. J. Inorg. Chem. 58, 1104 (2013).

    Article  CAS  Google Scholar 

  11. O. V. Loseva, T. A. Rodina, A. V. Ivanov, et al., J. Struct. Chem. 54, 598 (2013).

    Article  CAS  Google Scholar 

  12. L. Ronconi, L. Giovagnini, C. Marzano, et al., Inorg. Chem. 44, 1867 (2005).

    Article  CAS  Google Scholar 

  13. L. Ronconi, C. Marzano, P. Zanello, et al., J. Med. Chem. 49, 1648 (2006).

    Article  CAS  Google Scholar 

  14. B. J. McCormick, Inorg. Chem. 7, 1965 (1968).

    Article  CAS  Google Scholar 

  15. G. Vigee and J. Selbin, J. Inorg. Nucl. Chem. 31, 3187 (1969).

    Article  CAS  Google Scholar 

  16. P. T. Beurskens, J. A. Cras, and J. G. M. van der Linden, Inorg. Chem. 9, 475 (1970).

    Article  CAS  Google Scholar 

  17. D. J. Radanović, Z. D. Matović, V. D. Miletić, et al., Trans. Met. Chem. 21, 169 (1996).

    Article  Google Scholar 

  18. C. S. Hashim and M. F. Alias, J. Baghdad Sci. 9, 668 (2012).

    Google Scholar 

  19. SMART (Control) and SAINT (Integration) Software. Version 5.0 (Bruker, 1997).

  20. G. M. Sheldrick, SADABS: Program for Scanning and Correction of Area Detector Data (Göttingen Univ., Göttingen, 2004).

    Google Scholar 

  21. G. M. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008).

    Article  CAS  Google Scholar 

  22. A. Bondi, J. Phys. Chem. 70, 3006 (1966).

    Article  CAS  Google Scholar 

  23. N. W. Alcock, Adv. Inorg. Chem. Radiochem. 15(1), 1 (1972).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Additional information

Original Russian Text © I.A. Lutsenko, A.V. Ivanov, M.A. Kiskin, G.V. Ogil’ko, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 1, pp. 98–105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutsenko, I.A., Ivanov, A.V., Kiskin, M.A. et al. Gold(III) ionic complexes [Au{S2CN(C2H5)2}2]Cl and ([Au{S2CN(C2H5)2}2][AuCl4]) n : Synthesis, supramolecular self-assembly, polymorphism, and thermal behavior. Russ. J. Inorg. Chem. 60, 92–99 (2015). https://doi.org/10.1134/S0036023614120158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023614120158

Keywords

Navigation