Skip to main content
Log in

Olfactory Organ of Anemonefishes of the Genus Amphiprion (Amphiprioninae, Pomacentridae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The structure of the olfactory organ is studied in five species of anemonefishes of the genus Amphiprion: A. polymnus, A. clarkii, A. frenatus, A. perideraion, and A. ocellaris. All fish have one nostril, olfactory rosette of the arrow-shaped type with no secondary folding on olfactory lamellae, and two ventilation sacs (ethmoidal and larger lacrimal). The rosette is located on the medial (A. clarkii and A. perideraion) or ventromedial (A. polymnus, A. frenatus, and A. ocellaris) sides of the olfactory cavity; the number of lamellae in the rosette increases as a fish grows. The greatest total number of lamellae is 24 in A. polymnus. Intercalary (in four species) and dichotomous (in three species) lamellae are found in the rosette of most anemonefishes, which is an extremely rare case in other fishes. Atypical lamellae emerge later than regular ones in the ontogeny of the fish, but their number in different parts of the rosette differs between anemonefishes, and in some A. polymnus species, lamellae are predominantly atypical. The slope of the medial and lateral sides of the rosette toward the openings of the ventilation sacs (A. polymnus and A. frenatus) is considered a structural adaptation that improves water exchange near the surface of the olfactory lamellae and reception of odor information by the fish. The relationship between the structure of the olfactory organ and the generality of anemonefishes, their specialization, and strength of association with symbiotic sea anemones has not been revealed. The idea of an evolutionary trend from a simple structure of the olfactory organ (A. clarkii) to a morphologically more complex structure (A. polymnus and A. frenatus) in the genus Amphiprion after early separation from the general stem of the subgenus Actinicola (A. ocellaris and A. percula) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Allen, G.R., The Anemonefishes: Their Classification and Biology, Neptune City: T.F.H. Publ., 1972.

  2. Allen, G.R., Anemonefishes of the World: Species, Care and Breeding, Mentor: Aquarium Systems, 1980.

  3. Allen, G.R., Damselfishes of the World, Melle: Mergus, 1991.

  4. Allen, G.R., Family Pomacentridae (damselfishes), Ruffles Bull. Zool., no. 2000, Suppl. 8, pp. 626–627.

  5. Almany, G.R., Berumen, M.L., Thorrold, S.R., et al., Local replenishment of coral reef fish populations in a marine reserve, Science, 2007, vol. 316, no. 5825, pp. 742–744. https://doi.org/10.1126/science.1140597

    Article  CAS  PubMed  Google Scholar 

  6. Arvedlund, M. and Kavanagh, K., The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems, in Ecological Connectivity among Tropical Coastal Ecosystems, Dordrecht: Springer, 2009, pp. 135–184. https://doi.org/10.1007/978-90-481-2406-0_5

  7. Arvedlund, M. and Nielsen, L.E., Do the anemonefish Amphiprion ocellaris (Pisces: Pomacentridae) imprint themselves to their host sea anemone Heteractis magnifica (Anthozoa: Actinidae)?, Ethology, 1996, vol. 102, no. 2, pp. 197–211. https://doi.org/10.1111/j.1439-0310.1996.tb01118.x

    Article  Google Scholar 

  8. Arvedlund, M., McCormick, M.I., Fautin, D.G., and Bildsøe, M., Host recognition and possible imprinting in the anemonefish Amphiprion melanopus (Pisces: Pomacentridae), Mar. Ecol.: Proc. Ser., 1999, vol. 188, pp. 207–218. https://doi.org/10.3354/meps188207

    Article  Google Scholar 

  9. Arvedlund, M., Bundgaard, I., and Nielsen, L.E., Host imprinting in anemonefishes (Pisces: Pomacentridae): Does it dictate spawning site preferences?, Environ. Biol. Fish, 2000a, vol. 58, no. 2, pp. 203–213. https://doi.org/10.1023/A:1007652902857

    Article  Google Scholar 

  10. Arvedlund, M., Larsen, K., and Winsor, H., The embryonic development of the olfactory system in Amphiprion melanopus (Perciformes: Pomacentridae) related to the host imprinting hypothesis, J. Mar. Biol. Assoc. U.K., 2000b, vol. 80, no. 6, pp. 1103–1109. https://doi.org/10.1017/S0025315400003179

    Article  Google Scholar 

  11. Arvedlund, M., Brolund, T.M., and Nielsen, L.E., Morphology and cytology of the olfactory organs in small juvenile Dascyllus aruanus and Amphiprion ocellaris (Pisces: Pomacentridae), Ibid., 2003, vol. 83, no. 6, pp. 1321–1326. https://doi.org/10.1017/S0025315403008762

    Article  Google Scholar 

  12. Astakhov, D.A., Species composition of anemonefishes (Perciformes, Pomacentridae) and their host sea anemones (Cnidaria, Actiniaria) in the Khanhhoa Province (South Vietnam), J. Ichthyol., 2002, vol. 42, no. 1, pp. 37–50.

    Google Scholar 

  13. Astakhov, D.A., Materials on fauna of anemonefishes (Pomacentridae, Amphiprioninae) and their host sea anemones (cnidaria, actiniaria) on reefs of Ly Son Islands (South China Sea, Central Vietnam), Ibid., 2015, vol. 55, no. 5, pp. 753–756. https://doi.org/10.1134/S0032945215050033

    Article  Google Scholar 

  14. Astakhov, D.A., Gap in the continuous range of Amphiprion clarkii (Pomacentridae) in the Gulf of Thailand (South China Sea). Possible causes, Ibid., 2021, vol. 61, no. 6, pp. 808–817.

    Google Scholar 

  15. Astakhov, D.A., Savinkin, O.V., and Ponomarev, S.A., Fauna of anemonefishes (Pomacentridae, Amphiprioninae) and their host sea anemones (Cnidaria, Actiniaria) on reefs of Phu Quy, Con Son, and An Thoi Islands (South China Sea, South Vietnam, and Gulf of Thailand) and a review of these groups from the coastal waters of Vietnam, Ibid., 2016, vol. 56, no. 6, pp. 832–847. https://doi.org/10.1134/S0032945216060011

    Article  Google Scholar 

  16. Biology of Damselfishes, Boca Raton, FL: CRC Press, 2016. https://doi.org/10.1201/9781315373874

  17. Bridge, T., Scott, A., and Steinberg, D., Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia, Coral Reefs, 2012, vol. 31, no. 4, pp. 1057–1062. https://doi.org/10.1007/s00338-012-0916-x

    Article  Google Scholar 

  18. Brolund, T.M., Nielsen, L.E., and Arvedlund, M., Do juvenile Amphiprion ocellaris Cuvier (Pisces: Pomacentridae) recognize conspecifics by chemical or visual cues?, J. Mar. Biol. Assoc. U.K., 2003, vol. 83, no. 5, pp. 1127–1136. https://doi.org/10.1017/S0025315403008385h

    Article  Google Scholar 

  19. Burke da Silva, K. and Nedosyko, A., Sea anemones and anemonefish: A match made in heaven, in The Cnidaria, Past, Present and Future, Cham: Springer, 2016, pp. 425–438. https://doi.org/10.1007/978-3-319-31305-4_27

  20. Buston, P.M., Territory inheritance in clownfish, Proc. R. Soc. Lond. B., 2004, vol. 271, no. Suppl. 4, pp. S252–S254. https://doi.org/10.1098/rsbl.2003.0156

  21. Buston, P.M. and García, M.B., An extraordinary life span estimate for the clown anemonefish Amphiprion percula, J. Fish. Biol., 2007, vol. 70, no. 6, pp. 1710–1719. https://doi.org/10.1111/j.1095-8649.2007.01445.x

    Article  Google Scholar 

  22. Cleveland, A., Verde, E.A., and Lee, R.W., Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae, Mar. Biol., 2011, vol. 158, no. 3, pp. 589–602. https://doi.org/10.1007/s00227-010-1583-5

    Article  Google Scholar 

  23. Colleye, O., Vandewalle, P., Lanterbecq, D., et al., Interspecific variation of calls in clownfishes: Degree of similarity in closely related species, BMC Evol. Biol., 2011, vol. 11, Article 365. https://doi.org/10.1186/1471-2148-11-365

    Article  PubMed  PubMed Central  Google Scholar 

  24. Colleye, O., Iwata, E., and Parmentier, E., Clownfishes, in Biology of Damselfishes, Boca Raton: CRC Press, 2016, pp. 246–266. https://doi.org/10.1201/9781315373874

  25. Daly, M., Brugler, M.R., Cartwright, P., et al., The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus, Zootaxa, 2007, vol. 1668, pp. 127–182. https://doi.org/10.5281/zenodo.180149

    Article  Google Scholar 

  26. Dixson, D.L., Jones, G.P., Munday, P.L., et al., Coral reef fish smell leaves to find island homes, Proc. R. Soc. B., 2008, vol. 275, no. 1653, pp. 2831–2839. https://doi.org/10.1098/rspb.2008.0876

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dixson, D.L., Munday, P.L., Pratchett, M., and Jones, G.P., Ontogenetic changes in responses to settlement cues by anemonefish, Coral Reefs, 2011, vol. 30, no. 4, pp. 903–910. https://doi.org/10.1007/s00338-011-0776-9

    Article  Google Scholar 

  28. Døving, K.B., Functional properties of the fish olfactory system, Progress in Sensory Physiology, Berlin; Heidelberg: Springer, 1986, vol. 6, pp. 39–104. https://doi.org/10.1007/978-3-642-70411-6_2

  29. Døving, K.B. and Kasumyan, A.O., Chemoreception, in Fish Larval Physiology, Boca Raton, FL: CRC Press, 2008, pp. 331–394. https://doi.org/10.1201/9780429061608-15

  30. Elliott, J.K. and Mariscal, R.N., Coexistence of nine anemonefish species: Differential host and habitat utilization, size and recruitment, Mar. Biol., 2001, vol. 138, no. 1, pp. 23–36. https://doi.org/10.1007/s002270000441

    Article  Google Scholar 

  31. Elliott, J.K., Lougheed, S.C., Bateman, B., et al., Molecular phylogenetic evidence for the evolution of specialization in anemone fishes, Proc. R. Soc. Lond. B., 1999, vol. 266, no. 1420, pp. 677–685. https://doi.org/10.1098/rspb.1999.0689

    Article  CAS  Google Scholar 

  32. Fautin, D.G. and Allen, G.R., Field Guide to Anemonefishes and Their Host Sea Anemones, Perth: West. Aust. Mus., 1997.

    Google Scholar 

  33. Feeney, W.E. and Brooker, R.M., Anemonefishes, Curr. Biol., 2017, vol. 27, no. 1, pp. R6–R8. https://doi.org/10.1016/j.cub.2016.07.046

    Article  CAS  PubMed  Google Scholar 

  34. Froese, R. and Pauly, D., FishBase. World Wide Web Electronic Publication, Version 03/2023, 2023. www.fishbase.org.

  35. Garwood, R.J., Behnsen, J., Ramsey, A.T., et al., The functional nasal anatomy of the pike, Esox lucius L, Comp. Biochem. Physiol. Pt. A. Mol. Integr. Physiol., 2020, vol. 244, Article 110688. https://doi.org/10.1016/j.cbpa.2020.110688

    Article  CAS  Google Scholar 

  36. Hattori, A., Coexistence of two anemonefishes, Amphiprion clarkii and A. perideraion, which utilize the same host sea anemone, Environ. Biol. Fish, 1995, vol. 42, no. 4, pp. 345–353. https://doi.org/10.1007/BF00001464

    Article  Google Scholar 

  37. Hobbs, J.-P.A., Frisch, A.J., Ford, B.M., et al., Taxonomic, spatial and temporal patterns of bleaching in anemones inhabited by anemonefishes, PLoS One, 2013, vol. 8, no. 8, Article e70966. https://doi.org/10.1371/journal.pone.0070966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holl, A., Vergleichende morphologische und histologische Untersuchungen am Geruchsorgan der Knochenfische, Z. Morph. Ökol. Tiere, 1965, vol. 54, no. 6, pp. 707–782. https://www.jstor.org/stable/43262175

    Article  Google Scholar 

  39. Iwata, E. and Manbo, J., Territorial behaviour reflects sexual status in groups of false clown anemonefish (Amphiprion ocellaris) under laboratory conditions, Acta Ethol., 2013, vol. 16, no. 2, pp. 97–103. https://doi.org/10.1007/s10211-012-0142-0

    Article  Google Scholar 

  40. Jones, G.P., Planes, S., and Thorrold, S.R., Coral reef fish larvae settle close to home, Curr. Biol., 2005, vol. 15, no. 14, pp. 1314–1318. https://doi.org/10.1016/j.cub.2005.06.061

    Article  CAS  PubMed  Google Scholar 

  41. Jones, G.P., Srinivasan, M., Galbraith, G.F., et al., Saving Nemo. Extinction Risk, Conservation Status, and Effective Management Strategies for Anemonefishes, Evolution, Development and Ecology of Anemonefishes: Model Organisms For Marine Science, Boca Raton, FL: CRC Press, 2022, pp. 285–297. https://doi.org/10.1201/9781003125365-30

  42. Kasumyan, A.O., The olfactory system in fish: Structure, function, and role in behavior, J. Ichthyol., 2004, vol. 44, no. Suppl. 2, pp. S180–S223.

  43. Kasumyan, A.O., Pashchenko, N.I., and Oanh, L.T.K., Morphology of the olfactory organ in the climbing perch Anabas testudineus (Anabantidae, Perciformes), Biol. Bull., 2021, vol. 48, no. 8, pp. 142–157. https://doi.org/10.1134/S1062359021080148

    Article  Google Scholar 

  44. Kavanagh, K.D. and Alford, R.A., Sensory and skeletal development and growth in relation to the duration of the embryonic and larval stages in damselfishes (Pomacentridae), Biol. J. Linn. Soc., 2003, vol. 80, no. 2, pp. 187–206. https://doi.org/10.1046/j.1095-8312.2003.00229.x

    Article  Google Scholar 

  45. Klann, M., Mercader, M., Salis, P., et al., Anemonefishes, in Handbook of Marine Model Organisms in Experimental Biology, Boca Raton, FL: CRC Press, 2022, pp. 443–464. https://doi.org/10.1201/9781003217503-24

  46. Kleerekoper, H., Olfaction in Fishes, Bloomington: Ind. Univ. Press, 1969.

    Google Scholar 

  47. Lara, M.R., Development of the nasal olfactory organs in the larvae, settlement-stages and some adults of 14 species of Caribbean reef fishes (Labridae, Scaridae, Pomacentridae), Mar. Biol., 2008, vol. 154, no. 1, pp. 51–64. https://doi.org/10.1007/s00227-007-0899-2

    Article  Google Scholar 

  48. Litsios, G., Pearman, P.B., Lanterbecq, D., et al., The radiation of the clownfishes has two geographical replicates, J. Biogeogr., 2014, vol. 41, no. 11, pp. 2140–2149. https://doi.org/10.1111/jbi.12370

    Article  Google Scholar 

  49. Madduppa, H.H., Timm, J., and Kochzius, M., Reduced genetic diversity in the clown anemonefish Amphiprion ocellaris in exploited reefs of Spermonde Archipelago, Indonesia, Front. Mar. Sci., 2018, vol. 5, Article 80. https://doi.org/10.3389/fmars.2018.00080

    Article  Google Scholar 

  50. Manassa, R.P., Dixson, D.L., McCormick, M.I., and Chivers, D.P., Coral reef fish incorporate multiple sources of visual and chemical information to mediate predation risk, Anim. Behav., 2013a, vol. 86, no. 4, pp. 717–722. https://doi.org/10.1016/j.anbehav.2013.07.003

    Article  Google Scholar 

  51. Manassa, R.P., McCormick, M.I., Chivers, D.P., and Ferrari, M.C.O., Social learning of predators in the dark: Understanding the role of visual, chemical and mechanical information, Proc. R. Soc. B., 2013b, vol. 280, no. 1765, Article 20130720. https://doi.org/10.1098/rspb.2013.0720

  52. Miyagawa, K. and Hidaka, T., Amphiprion clarkii juvenile: Innate protection against and chemical attraction by symbiotic sea anemones, Proc. Jpn. Acad. Ser. B., 1980, vol. 56, no. 6, pp. 356–361. https://doi.org/10.2183/pjab.56.356

    Article  Google Scholar 

  53. Miyagawa-Kohshima, K., Odoriba, S., Okabe, D., et al., Embryonic learning of chemical cues via the parents’ host in anemonefish (Amphiprion ocellaris), J. Exp. Mar. Biol. Ecol., 2014, vol. 457, pp. 160–172. https://doi.org/10.1016/j.jembe.2014.04.004

    Article  CAS  Google Scholar 

  54. Moyer, J.T., Influence of temperate waters on the behavior of the tropical anemonefish Amphiprion clarkii at Miyake-jima, Japan, Bull. Mar. Sci., 1980, vol. 30, no. Suppl. 1, pp. 261–272.

  55. Moyer, J.T. and Steene, R.C., Nesting behavior of the anemonefish Amphiprion polymnus, Jpn. J. Ichthyol., 1979, vol. 26, no. 2. https://doi.org/10.11369/jji1950.26.209

  56. Murphy, B.F., Leis, J.M., and Kavanagh, K.D., Larval development of the Ambon damselfish Pomacentrus amboinensis, with a summary of pomacentrid development, J. Fish. Biol., 2007, vol. 71, no. 2, pp. 569–584. https://doi.org/10.1111/j.1095-8649.2007.01524.x

    Article  Google Scholar 

  57. Nelson, J.S., Fishes of the World, Hoboken: John Wiley and Sons, 2006.

    Google Scholar 

  58. Nguyen, H.-T.T., Tran, A.-N.T., Ha, L.T.L., et al., Host choice and fitness of anemonefish Amphiprion ocellaris (Perciformes: Pomacentridae) living with host anemones (Anthozoa: Actiniaria) in captive conditions, J. Fish. Biol., 2019, vol. 94, no. 6, pp. 937–947. https://doi.org/10.1111/jfb.13910

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nguyen, H.-T.T., Dang, B.T., Glenner, H., and Geffen, A.J., Cophylogenetic analysis of the relationship between anemonefish Amphiprion (Perciformes: Pomacentridae) and their symbiotic host anemones (Anthozoa: Actiniaria), Mar. Biol. Res., 2020, vol. 16, no. 2, pp. 117–133. https://doi.org/10.1080/17451000.2020.1711952

    Article  Google Scholar 

  60. Pashchenko, N.I. and Kasumyan, A.O., Development of the olfactory organ in the ontogeny of carps (Cyprinidae), J. Ichthyol., 2017, vol. 57, no. 1, pp. 136–151. https://doi.org/10.1134/S0032945217010088

    Article  Google Scholar 

  61. Pashchenko, N.I. and Kasumyan, A.O., Morphology and ventilation of the olfactory organ in the Indo-Pacific sergeant Abudefdufvaigiensis (Pomacentridae), Ibid., 2019, vol. 59, no. 2, pp. 167–173. https://doi.org/10.1134/S0032945219010120

    Article  Google Scholar 

  62. Pashchenko, N.I., Oanh, L.T.K., and Kasumyan, A.O., Morphology and ventilation of the olfactory organ in scissortail sergeant Abudefduf sexfasciatus (Pomacentridae), Ibid., 2022, vol. 62, no. 3, pp. 373–384. https://doi.org/10.1134/S0032945222030110

    Article  Google Scholar 

  63. Pryor, S.H., Hill, R., Dixson, D.L., et al., Anemonefish facilitate bleaching recovery in a host sea anemone, Sci. Rep., 2020, vol. 10, Article 18586. https://doi.org/10.1038/s41598-020-75585-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Randall, J.E., Allen, G.R., and Steene, R.C., Fishes of the Great Barrier Reef and Coral Sea, Bathurst: Crawford House Publ., 1997.

  65. Ricciardi, F., Boyer, M., and Ollerton, J., Assemblage and interaction structure of the anemonefish-anemone mutualism across the Manado region of Sulawesi, Indonesia, Environ. Biol. Fish., 2010, vol. 87, no. 4, pp. 333–347. https://doi.org/10.1007/s10641-010-9606-0

    Article  Google Scholar 

  66. Roopin, M. and Chadwick, N.E., Benefits to host sea anemones from ammonia contributions of resident anemonefish, J. Exp. Mar. Biol. Ecol., 2009, vol. 370, nos. 1–2, pp. 27–34. https://doi.org/10.1016/j.jembe.2008.11.006

    Article  CAS  Google Scholar 

  67. Roux, N. and Lecchini, D., Clownfish chemically recognized their sea-anemone host at settlement, Vie Milieu, 2015, vol. 65, no. 1, pp. 17–20.

    Google Scholar 

  68. Roux, N., Salis, P., Lambert, A., et al., Staging and normal table of postembryonic development of the clownfish (Amphiprion ocellaris), Devel. Dyn., 2019, vol. 248, no. 7, pp. 545–568. https://doi.org/10.1002/dvdy.46

    Article  Google Scholar 

  69. Shuman, C.S., Hodgson, G., and Ambrose, R.F., Population impacts of collecting sea anemones and anemonefish for the marine aquarium trade in the Philippines, Coral Reefs, 2005, vol. 24, no. 4, pp. 564–573. https://doi.org/10.1007/s00338-005-0027-z

    Article  Google Scholar 

  70. Tang, K.L., Stiassny, M.L.J., Mayden, R.L., and DeSalle, R., Systematics of damselfishes, Ichthyol. Herpetol., 2021, vol. 109, no. 1, pp. 258–318. https://doi.org/10.1643/i2020105

    Article  Google Scholar 

  71. Yamamoto, M., Comparative morphology of fish olfactory organ in teleosts, in Chemoreception in Fishes, New York: Elsevier, 1982, pp. 39–59.

    Google Scholar 

  72. Yamamoto, M. and Ueda, K., Comparative morphology of fish olfactory epithelium. X. Perciformes, Beryciformes, Scorpaeniformes, and Pleuronectiformes, J. Fac. Sci. Univ. Tokyo, 1979, vol. 14, pp. 273–297.

    Google Scholar 

  73. Zeiske, E., Theisen, B., and Breucker, H., Structure, development, and evolutionary aspects of the peripheral olfactory system, in Fish Chemoreception, Dordrecht: Springer, 1992, pp. 13–39. https://doi.org/10.1007/978-94-011-2332-7_2

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to all colleagues at the Coastal Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center who assisted in the collection of the material.

Funding

The material was collected with the financial support of the Coastal Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center (theme E-3.1). Processing of the primary data, analysis of the results, and making of this paper were performed within the framework of the scientific project of the state assignment for Lomonosov Moscow State University No. 121032300100-5 in the Unified State Information System of Accounting for the Results of Scientific Research, Experimental Design, and Technological Works of Civilian Purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Pashchenko.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The authors confirm that this work was not associated with experiments on fish or other animals and therefore does not require approval by the bioethics committee. The fishes were purchased from local markets and pet shops, and were killed with an overdose of MS-222 anesthetic (the protocol was approved by the Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center, permission No. 856/QD-TTNDVN).

Additional information

Translated by A. Lisenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchenko, N.I., Oan, L.T. & Kasumyan, A.O. Olfactory Organ of Anemonefishes of the Genus Amphiprion (Amphiprioninae, Pomacentridae). J. Ichthyol. 64, 139–155 (2024). https://doi.org/10.1134/S0032945224010089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945224010089

Keywords:

Navigation