Skip to main content
Log in

Modern Magnetocaloric Materials: Current Problems and Future Research Prospects

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The paper presents a concise overview of a novel and promising area, namely, magnetic cooling technology that utilizes the magnetocaloric effect (MCE). The nature of the effect and the main relevant publications in this field are succinctly examined. The materials in which the MCE is observed are reported, and corresponding charts reflecting the number of main works of the last five years are presented. Additionally, recent research findings of Russian scientists in this field are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. S. Tassou and Yu. Ge, “Reduction of refrigeration energy consumption and environmental impacts in food retailing,” in Handbook of Water and Energy Management in Food Processing (Elsevier, 2008), Vol. 585, pp. 585–611. https://doi.org/10.1533/9781845694678.4.585

    Book  Google Scholar 

  2. M. Isaac and D. P. Van Vuuren, “Modeling global residential sector energy demand for heating and air conditioning in the context of climate change,” Energy Policy 37, 507–521 (2009). https://doi.org/10.1016/j.enpol.2008.09.051

    Article  Google Scholar 

  3. S. A. Tassou, J. S. Lewis, Y. T. Ge, A. Hadawey, and I. Chaer, “A review of emerging technologies for food refrigeration applications,” Appl. Therm. Eng. 30, 263–276 (2010). https://doi.org/10.1016/j.applthermaleng.2009.09.001

    Article  Google Scholar 

  4. S. B. Smith and K. E. Parmenter, “Energy analysis,” in Energy Management Principles, Ed. by S. B. Smith and K. E. Parmenter, 2nd ed. (Elsevier, Oxford, 2016), pp. 95–123.

    Book  Google Scholar 

  5. V. K. Pecharsky and K. A. Gschneidner, “Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290 K,” Appl. Phys. Lett. 70, 3299–3301 (1997). https://doi.org/10.1063/1.119206

    Article  CAS  Google Scholar 

  6. B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, and Z. Chen, “Review on research of room temperature magnetic refrigeration,” Int. J. Refrigeration 26, 622–636 (2003). https://doi.org/10.1016/s0140-7007(03)00048-3

    Article  Google Scholar 

  7. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications, Series in Condensed Matter Physics (Institute of Physics Publishing, 2003).

  8. K. A. Gschneidner jr, V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005). https://doi.org/10.1088/0034-4885/68/6/r04

    Article  Google Scholar 

  9. K. A. Gschneidner jr and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” Int. J. Refrigeration 31, 945–961 (2008). https://doi.org/10.1016/j.ijrefrig.2008.01.004

    Article  Google Scholar 

  10. O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu, “Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient,” Adv. Mater. 23, 821–842 (2011). https://doi.org/10.1002/adma.201002180

    Article  CAS  Google Scholar 

  11. V. D. Buchelnikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633–665 (2011). https://doi.org/10.1134/s0031918x11070052

    Article  Google Scholar 

  12. K. G. Sandeman, “Magnetocaloric materials: The search for new systems,” Scr. Mater. 67, 566–571 (2012). https://doi.org/10.1016/j.scriptamat.2012.02.045

    Article  CAS  Google Scholar 

  13. O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 374, 20150308 (2016). https://doi.org/10.1098/rsta.2015.0308

    Article  CAS  Google Scholar 

  14. J. Lyubina, “Magnetocaloric materials for energy efficient cooling,” J. Phys. D: Appl. Phys. 50, 053002 (2017). https://doi.org/10.1088/1361-6463/50/5/053002

    Article  CAS  Google Scholar 

  15. V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  16. F. Scheibel, T. Gottschall, A. Taubel, M. Fries, K. P. Skokov, A. Terwey, W. Keune, K. Ollefs, H. Wende, M. Farle, M. Acet, O. Gutfleisch, and M. E. Gruner, “Hysteresis design of magnetocaloric materials—From basic mechanisms to applications,” Energy Technol. 6, 1397–1428 (2018). https://doi.org/10.1002/ente.201800264

    Article  CAS  Google Scholar 

  17. N. A. Zarkevich and V. I. Zverev, “Viable materials with a giant magnetocaloric effect,” Crystals 10, 815 (2020). https://doi.org/10.3390/cryst10090815

    Article  CAS  Google Scholar 

  18. A. Kitanovski, “Energy applications of magnetocaloric materials,” Adv. Energy Mater. 10 (2020). https://doi.org/10.1002/aenm.201903741

  19. A. Kitanovski, “Applications on magnetocaloric materials,” in Encyclopedia of Smart Materials, Ed. by A.‑G. Olabi (Elsevier, Oxford, 2022), Vol. 5, pp. 418–432. https://doi.org/10.1016/b978-0-12-803581-8.11710-2

    Book  Google Scholar 

  20. V. V. Khovaylo and S. V. Taskaev, “Magnetic refrigeration: From theory to applications,” in Encyclopedia of Smart Materials, Ed. by A.-G. Olabi (Elsevier, Oxford, 2022), Vol. 5, pp. 407–417. https://doi.org/10.1016/b978-0-12-815732-9.00132-7

    Book  Google Scholar 

  21. V. V. Sokolovskiy, O. N. Miroshkina, and V. D. Buchelnikov, “Review of modern theoretical approaches for study of magnetocaloric materials,” Phys. Met. Metallogr. 123, 319–374 (2022). https://doi.org/10.1134/s0031918x22040111

    Article  CAS  Google Scholar 

  22. J. Ya. Law, L. M. Moreno-Ramírez, Á. Díaz-García, and V. Franco, “Current perspective in magnetocaloric materials research,” J. Appl. Phys. 133, 040903 (2023). https://doi.org/10.1063/5.0130035

    Article  CAS  Google Scholar 

  23. V. V. Khovaylo, K. P. Skokov, Yu. S. Koshkid’ko, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, S. V. Taskaev, H. Miki, T. Takagi, and A. N. Vasiliev, “Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81Ga as a case study,” Phys. Rev. B 78, 60403 (2008). https://doi.org/10.1103/physrevb.78.060403

    Article  Google Scholar 

  24. A. Kamantsev, A. Amirov, D. Yusupov, L. Butvina, Yu. Koshkid’ko, A. Golovchan, V. Val’kov, A. Aliev, V. Koledov, and V. G. Shavrov, “Advanced non-contact optical methods for magnetocaloric effect measuring,” Phys. Met. Metallogr. 124 (11), 1069–1074 (2023).

  25. A. P. Kamantsev, A. A. Amirov, D. M. Yusupov, A. V. Golovchan, O. E. Kovalev, A. S. Komlev, and A. M. Aliev, “The magnetocaloric effect in La(Fe,Mn,Si)13Hx based composites: experiment and theory,” Phys. Met. Metallogr. 124 (11), 1121–1131 (2023).

  26. P. A. Igoshev, “Magnetocalorical effect and phase separation: Theory and perspectives,” Phys. Met. Metallogr. 124 (11), 1112–1120 (2023).

  27. K. Kolesov, A. Mashirov, A. Irzhak, M. Chichkov, E. Safrutina, D. Kiselev, A. Kuznetsov, O. Belova, V. Koledov, and V. G. Shavrov, “Thermal contact resistance of the copper–copper pair with graphene thermal interface in magnetic fields up to 10 T,” Phys. Met. Metallogr. 124 (11), 1105–1111 (2023).

  28. V. V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, “Magnetocaloric effect of Mn2YSn (Y = Sc, Ti, V) alloys,” Phys. Met. Metallogr. 124 (11), 1167–1173 (2023).

  29. O. O. Pavlukhina, V. V. Sokolovskiy, and V. D. Buchelnikov, “Electronic structure and magnetic properties of FeRhSn1 – xZx (Z = Ge, Si, Sb): Ab initio study,” Phys. Met. Metallogr. 124 (11), 1147–1152 (2023).

  30. V. V. Sokolovskiy and V. D. Buchelnikov, “Effect of Ga partial substitution on the structural and magnetic properties of Heusler Ni–Mn–Ga alloys,” Phys. Met. Metallogr. 124 (11), 1152–1161 (2023).

  31. I. Musabirov, R. Gaifullin, I. Safarov, R. Galeev, D. Afonichev, K. Kirilyuk, V. Koledov, A. Mashirov, and R. R. Mulyukov, “Effect of treatment by isothermal forging on martensitic transformation in the Ni–Mn–Ga Heusler alloys,” Phys. Met. Metallogr. 124 (11), 1174–1180 (2023).

  32. M. V. Utarbekova, M. A. Orshulevich, D. S. Bataev, A. G. Fazlitdinova, and S. V. Taskaev, “Magnetocaloric effect in RCO5 (R = Gd, Tb, Dy, Ho) alloys,” Phys. Met. Metallogr. 124 (11), 1132–1138 (2023).

  33. N. Yu. Pankratov, I. S. Tereshina, and S. A. Nikitin, “Magnetocaloric effect in rare-earth magnetic materials,” Phys. Met. Metallogr. 124 (11), 1139–1146 (2023).

  34. V. I. Val’kov, A. V. Golovchan, I. F. Gribanov, E. P. Andreichenko, O. E. Kovalev, V. I. Mityuk, and A. V. Mashirov, “Baric transformation of the character of the magnetic order and magnetocaloric properties in the Mn1 – xCrxNiGe system,” Phys. Met. Metallogr. 124 (11), 1092–1098 (2023).

  35. K. R. Erager, V. Sokolovskiy, V. Buchelnikov, A. Gamzatov, and A. M. Aliev, “Phase stability of Ni(Co)–Mn–Z (Z = Ga, In, Sb, Sn) Heusler alloys,” Phys. Met. Metallogr. 124 (11), 1181–1188 (2023).

  36. A. B. Gadzhiev, A. M. Aliev, A. G. Gamzatov, L. N. Khanov, V. I. Mityuk, and G. A. Govor, “Magnetostriction and magnetocaloric properties of the Mn1 – xFexAs system,” Phys. Met. Metallogr. 124 (11), 1162–1166 (2023).

Download references

ACKNOWLEDGMENTS

V.V. Marchenkov expresses gratitude to Ural Federal University for supporting the work (Priority-2030 program).

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation under the state assignments FUMM-2022-0003 (topic “Spin” S.r. no. 122021000036-3) and FEGG-2020-0012 (075-01493-23-00 S.r. no. 120070890015-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Marchenkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolovskiy, V.V., Zagrebin, M.A., Buchelnikov, V.D. et al. Modern Magnetocaloric Materials: Current Problems and Future Research Prospects. Phys. Metals Metallogr. 124, 1069–1074 (2023). https://doi.org/10.1134/S0031918X23602135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23602135

Keywords:

Navigation