Skip to main content
Log in

The Influence of Technological Parameters on the Structure and Properties of the Al–Cu–Mg–Si Alloy Obtained Using Selective Laser Melting

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Monolith and bulk-structured samples of different densities have been obtained using selective laser melting on a Realizer SLM 100 3D-printer intended for metals. Their quality and structure have been estimated via metallography and scanning electron microscopy. The correlation has been established between the parameters of synthesis, namely, between the intertrack distance and layer thickness at a laser power of 200 W, on the one hand, and structural characteristics, on the other. Based on the experimental results, the optimum operating parameters of a 3D-printer were found to obtain the Al–Cu–Mg–Si samples with dispersed structure and high mechanical properties. The features of the synthesis of bulk-structured samples with cubic geometry of plotting have been studied, and the types of defects that affect the quality and mechanical properties of samples have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. V. Sorokin, “Additive technologies: New conditions, new opportunities,” Additivnye Tekhnol., No. 3, 21–24 (2022).

  2. E. N. Kablov, “Additive technologies is a dominant of national technological initiative,” Intellekt Tekhnol., No. 2, 52–55 (2015).

  3. T. Debroy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  4. R. Rashid, S. H. Masood, D. Ruan, S. Palanisamy, R. A. Rahman Rashid, J. Elambasseril, and M. Brandt, “Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy,” Addit. Manuf. 22, 426–429 (2018). https://doi.org/10.1016/j.addma.2018.05.040

    Article  CAS  Google Scholar 

  5. N. Kang, P. Coddet, L. Dembinski, H. Liao, and C. Coddet, “Microstructure and strength analysis of eutectic Al–Si alloy in-situ manufactured using selective laser melting from elemental powder mixture,” J. Alloys Compd. 691, 316–322 (2017). https://doi.org/10.1016/j.jallcom.2016.08.249

    Article  CAS  Google Scholar 

  6. J. Zhao, M. Easton, M. Qian, M. Leary, and M. Brandt, “Effect of building direction on porosity and fatigue life of selective laser melted AlSi12Mg alloy,” Mater. Sci. Eng., A 729, 76–85 (2018). https://doi.org/10.1016/j.msea.2018.05.040

    Article  CAS  Google Scholar 

  7. I. G. Brodova, O. A. Chikova, A. N. Petrova, and A. G. Merkushev, “Structure formation and properties of eutectic silumin obtained using selective laser melting,” Phys. Met. Metallogr. 120, 1109–1114 (2019). https://doi.org/10.1134/s0031918x19110024

    Article  CAS  Google Scholar 

  8. N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des. 65, 417–424 (2015). https://doi.org/10.1016/j.matdes.2014.09.044

    Article  CAS  Google Scholar 

  9. G. Xue, L. Ke, H. Zhu, H. Liao, J. Zhu, and X. Zeng, “Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties,” Mater. Sci. Eng., A 764, 138155 (2019). https://doi.org/10.1016/j.msea.2019.138155

    Article  CAS  Google Scholar 

  10. P. Yuan, D. Gu, and D. Dai, “Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites,” Mater. Des. 82, 46–55 (2015). https://doi.org/10.1016/j.matdes.2015.05.041

    Article  CAS  Google Scholar 

  11. J. Jue, D. Gu, K. Chang, and D. Dai, “Microstructure evolution and mechanical properties of Al–Al2O3 composites fabricated by selective laser melting,” Powder Technol. 310, 80–91 (2017). https://doi.org/10.1016/j.powtec.2016.12.079

    Article  CAS  Google Scholar 

  12. Q. Han, R. Setchi, F. Lacan, D. Gu, and S. L. Evans, “Selective laser melting of advanced Al–Al2O3 nanocomposites: Simulation, microstructure and mechanical properties,” Mater. Sci. Eng., A 698, 162–173 (2017). https://doi.org/10.1016/j.msea.2017.05.061

    Article  CAS  Google Scholar 

  13. Z. Hu, F. Chen, J. Xu, Q. Nian, D. Lin, C. Chen, X. Zhu, Ya. Chen, and M. Zhang, “3D printing graphene-aluminum nanocomposites,” J. Alloys Compd. 746, 269–276 (2018). https://doi.org/10.1016/j.jallcom.2018.02.272

    Article  CAS  Google Scholar 

  14. X. P. Li, X. J. Wang, M. Saunders, A. Suvorova, L. C. Zhang, Y. J. Liu, M. H. Fang, Z. H. Huang, and T. B. Sercombe, “A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility,” Acta Mater. 95, 74–82 (2015). https://doi.org/10.1016/j.actamat.2015.05.017

    Article  CAS  Google Scholar 

  15. N. V. Dynin, A. O. Ivanova, D. V. Khasikov, and M. S. Oglodkov, “Selective laser melting of aluminium alloy (review),” Tr. VIAM, No. 8, 12–23 (2017). https://doi.org/10.18577/2307-6046-2017-0-8-2-2

    Article  Google Scholar 

  16. C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Addit. Manuf. 22, 165–175 (2018). https://doi.org/10.1016/j.addma.2018.05.005

    Article  CAS  Google Scholar 

  17. L. N. Carter, C. Martin, P. J. Withers, and M. M. Attallah, “The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy,” J. Alloys Compd. 615, 338–347 (2014). https://doi.org/10.1016/j.jallcom.2014.06.172

    Article  CAS  Google Scholar 

  18. S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater. 108, 36–45 (2016). https://doi.org/10.1016/j.actamat.2016.02.014

    Article  CAS  Google Scholar 

  19. H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016). https://doi.org/10.1016/j.msea.2015.12.101

    Article  CAS  Google Scholar 

  20. I. G. Brodova, A. I. Klenov, I. G. Shirinkina, E. B. Smirnov, and N. Yu. Orlova, “Structure and mechanical properties of Al–Cu–Mg–Si alloy prepared by selective laser melting,” Phys. Met. Metallogr. 122, 1220–1227 (2021). https://doi.org/10.1134/s0031918x21120036

    Article  CAS  Google Scholar 

  21. G. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: A review,” Appl. Bionics Biomechanics 2018, 1654782 (2018). https://doi.org/10.1155/2018/1654782

    Article  Google Scholar 

  22. S. V. D’yachenko, L. A. Lebedev, M. Sychev, and L. Nefedova, “Physicomechanical properties of a model material in the form of a cube with the topology of triply periodic minimal surfaces of the gyroid type,” Tech. Phys. 63, 984–987 (2018). https://doi.org/10.1134/S1063784218070101

    Article  Google Scholar 

  23. I. Yadroitsev and I. Smurov, “Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape,” Phys. Procedia 5, 551–560 (2010). https://doi.org/10.1016/j.phpro.2010.08.083

    Article  Google Scholar 

  24. C. Galy, E. Le Guen, E. Lacoste, C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Additive Manufacturing 22, 165–175 (2018).

  25. T. Kimura, T. Nakamoto, M. Mizuno, and H. Araki, “Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting,” Mater. Sci. Eng., A 682, 593–602 (2017). https://doi.org/10.1016/j.msea.2016.11.059

    Article  CAS  Google Scholar 

  26. E. Yasa and J. Kruth, “Application of laser re-melting on selective laser melting parts,” Adv. Prod. Eng. Manage. 6, 259–270 (2011).

    Google Scholar 

  27. W. C. Winegard, An Introduction to the Solidication of Metals (The Inst. of Metals, London, 1964).

    Google Scholar 

  28. L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworth-Heinemann, 1976). https://doi.org/10.1016/C2013-0-04239-9

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the facilities of the Center of Collaborative Assess “Test Center for Nanotechnologies and Advanced Materials,” Institute of Metal Physics, Ural Division, Russian Academy of Sciences.

Funding

This work was performed within the framework of the State Task of the Ministry of Education and Science of the Russian Federation (theme “Struktura,” no. 122021000033-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Petrova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, A.N., Klenov, A.I., Brodova, I.G. et al. The Influence of Technological Parameters on the Structure and Properties of the Al–Cu–Mg–Si Alloy Obtained Using Selective Laser Melting. Phys. Metals Metallogr. 124, 1017–1025 (2023). https://doi.org/10.1134/S0031918X23601853

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601853

Keywords:

Navigation