Skip to main content
Log in

Short-Range Order Formed in an Equiatomic CoNiCrFeMn Alloy during Annealing. Atomistic MD/MC Simulation

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

The formation of a short-range order in an equiatomic high-entropy alloy (HEA) CoNiCrFeMn during annealing at moderate temperatures is studied by atomistic MD/MC simulation, including the exchange of atoms in the Monte Carlo (MC) scheme and relaxation of their positions by molecular dynamics (MD) simulation. Two types of chemical short-range order (CSRO) regions are found to form during annealing. The first type is mainly represented by Fe–Co atoms, and the second, by Cr-rich regions with Ni and Mn atoms at their boundaries. The short-range order formation is shown to include several stages, the sequence of which is determined by the Cr–Cr, Fe–Co, and Ni–Mn interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Yo. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  2. D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  3. M. Tokarewicz and M. Grądzka-Dahlke, “Review of recent research on AlCoCrFeNi high-entropy alloy,” Metals 11, 1302 (2021). https://doi.org/10.3390/met11081302

    Article  CAS  Google Scholar 

  4. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375377, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  5. F. Otto, A. Dlouhý, K. G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E. George, “Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures,” Acta Mater. 112, 40–52 (2016). https://doi.org/10.1016/j.actamat.2016.04.005

    Article  CAS  Google Scholar 

  6. M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, and Ya. Champion, “Insights into the phase diagram of the CrMnFeCoNi high entropy alloy,” Acta Mater. 88, 355–365 (2015). https://doi.org/10.1016/j.actamat.2015.01.068

    Article  CAS  Google Scholar 

  7. B. Schuh, F. Mendez-Martin, B. Völker, E. P. George, H. Clemens, R. Pippan, and A. Hohenwarter, “Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation,” Acta Mater. 96, 258–268 (2015). https://doi.org/10.1016/j.actamat.2015.06.025

    Article  CAS  Google Scholar 

  8. X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, and C. Yu, “Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential,” Mater. Des. 202, 109560 (2021). https://doi.org/10.1016/j.matdes.2021.109560

    Article  CAS  Google Scholar 

  9. E. Antillon, C. Woodward, S. I. Rao, B. Akdim, and T. A. Parthasarathy, “Chemical short range order strengthening in a model FCC high entropy alloy,” Acta Mater. 190, 29–42 (2020). https://doi.org/10.1016/j.actamat.2020.02.041

    Article  CAS  Google Scholar 

  10. W.-R. Jian, Z. Xie, S. Xu, Ya. Su, X. Yao, and I. J. Beyerlein, “Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi,” Acta Mater. 199, 352–369 (2020). https://doi.org/10.1016/j.actamat.2020.08.044

    Article  CAS  Google Scholar 

  11. B. Xing, X. Wang, W. J. Bowman, and P. Cao, “Short-range order localizing diffusion in multi-principal element alloys,” Scr. Mater. 210, 114450 (2022). https://doi.org/10.1016/j.scriptamat.2021.114450

    Article  CAS  Google Scholar 

  12. F. X. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J. Y. P. Ko, D. C. Pagan, J. C. Neuefeind, W. J. Weber, and Ya. Zhang, “Local structure and short-range order in a NiCoCr solid solution alloy,” Phys. Rev. Lett. 118, 205501 (2017). https://doi.org/10.1103/physrevlett.118.205501

    Article  CAS  Google Scholar 

  13. Z. Lei, X. Liu, Yu. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Yi. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T. Nieh, and Z. Lu, “Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes,” Nature 563, 546–550 (2018). https://doi.org/10.1038/s41586-018-0685-y

    Article  CAS  Google Scholar 

  14. Q. Ding, Yi. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Ya. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, and Q. Yu, “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature 574, 223–227 (2019). https://doi.org/10.1038/s41586-019-1617-1

    Article  CAS  Google Scholar 

  15. Yu. Ma, Q. Wang, C. Li, L. J. Santodonato, M. Feygenson, C. Dong, and P. K. Liaw, “Chemical short-range orders and the induced structural transition in high-entropy alloys,” Scr. Mater. 144, 64–68 (2018). https://doi.org/10.1016/j.scriptamat.2017.09.049

    Article  CAS  Google Scholar 

  16. M. Mizuno, K. Sugita, and H. Araki, “Prediction of short-range order in CrMnFeCoNi high-entropy alloy,” Results Phys. 34, 105285 (2022). https://doi.org/10.1016/j.rinp.2022.105285

    Article  Google Scholar 

  17. Q.-J. Li, H. Sheng, and E. Ma, “Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways,” Nat. Commun. 10, 3563 (2019). https://doi.org/10.1038/s41467-019-11464-7

    Article  CAS  Google Scholar 

  18. K.-T. Hsieh, Yo. Lin, Ch.-H. Lu, J.-R. Yang, P. Liaw, and Ch.-L. Kuo, “Atomistic simulations of the face-centered-cubic-to-hexagonal-close-packed phase transformation in the equiatomic CoCrFeMnNi high entropy alloy under high compression,” Comput. Mater. Sci. 184, 109864 (2020). https://doi.org/10.1016/j.commatsci.2020.109864

    Article  CAS  Google Scholar 

  19. L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “The formation of segregations and nanofaceting of asymmetric special grain boundaries in Al,” Phys. Met. Metallogr. 123 (10), 1011–1016 (2022). https://doi.org/10.1134/S0031918X22601020

    Article  Google Scholar 

  20. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/index.html.

  21. W.-M. Choi, Yo. Kim, D. Seol, and B.-J. Lee, “Modified embedded-atom method interatomic potentials for the Co–Cr, Co–Fe, Co–Mn, Cr-–Mn and Mn–Ni binary systems,” Comput. Mater. Sci. 130, 121–129 (2017). https://doi.org/10.1016/j.commatsci.2017.01.002

    Article  CAS  Google Scholar 

  22. Sh. Zhang, O. Y. Kontsevoi, A. J. Freeman, and G. B. Olson, “First principles investigation of zinc-induced embrittlement in an aluminum grain boundary,” Acta Mater. 59, 6155–6167 (2011). https://doi.org/10.1016/j.actamat.2011.06.028

    Article  CAS  Google Scholar 

  23. D. de Fontaine, “The number of independent pair-correlation functions in multicomponent systems,” J. Appl. Crystallogr. 4, 15–19 (1971). https://doi.org/10.1107/s0021889871006174

    Article  CAS  Google Scholar 

  24. S. Shuang, S. Lu, B. Zhang, C. Bao, Q. Kan, G. Kang, and X. Zhang, “Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: A molecular dynamics study,” Comput. Mater. Sci. 195, 110495 (2021). https://doi.org/10.1016/j.commatsci.2021.110495

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of a state assignment according to projects Pressure (project no. 122021000032-5) and Structure (project no. 122021000033-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Kar’kina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar’kin, I.N., Kar’kina, L.E. & Gornostyrev, Y.N. Short-Range Order Formed in an Equiatomic CoNiCrFeMn Alloy during Annealing. Atomistic MD/MC Simulation. Phys. Metals Metallogr. 124, 1026–1031 (2023). https://doi.org/10.1134/S0031918X23601671

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601671

Keywords:

Navigation