Skip to main content
Log in

The Effect of High-Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Cu–Al–Ni–(B) Alloys with a Thermoelastic Martensitic Transformation

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Polycrystalline boron-alloyed α + β Cu–Al–Ni compositions subjected to high-temperature thermomechanical treatment (HTMT) via forging and rolling are studied for the first time. Optical, scanning, and transmission electron microscopy and X-ray diffraction analysis were used in combination with measurements of tensile mechanical properties to study the peculiarities of the microstructure, phase composition, and mechanical properties of these alloys. The peculiarities of the microstructure and mechanical behavior of alloys differing in their aluminum and boron contents, which were subjected to HTMT, have been determined. The alloys were prepared in the fine-grained state, which determines the increase in the functional strength and plastic characteristics. A schedule of HTMT of bulk Cu–Al–Ni–(B) alloys is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. H. Warlimont and L. Delaey, “Martensitic transformations in copper-silver and gold based alloys,” Prog. Mater. Sci. 18, 1–157 (1974).

    Google Scholar 

  2. V. A. Likhachev, S. L. Kuz’min, and Z. P. Kamentseva, Shape Memory Effect (Leningrad. Gos. Univ., Leningrad, 1987).

    Google Scholar 

  3. G. V. Kurdyumov and L. G. Khandros, “On the “thermoelastic” equilibrium on martensitic transformations,” Dokl. Akad. Nauk SSSR 66, 211–214 (1949). http://archive.ujp.bitp.kiev.ua/files/journals/53/si/ 53SI20p.pdf.

    CAS  Google Scholar 

  4. K. Otsuka, K. Shimizu, Yu. Suzuki, and Yu. Sekiguti, Shape Memory Alloys, Ed. by H. Funakobo (Kyoto, 1984).

    Google Scholar 

  5. P. Sedlák, H. Seiner, M. Landa, V. Novák, P. Šittner, and L. Mañosa, “Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy,” Acta Mater. 53, 3643–3661 (2005). https://doi.org/10.1016/j.actamat.2005.04.013

    Article  CAS  Google Scholar 

  6. L. Mañosa, S. Jarque-Farnos, E. Vives, and A. Planes, “Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys,” Appl. Phys. Lett. 103, 211904 (2013). https://doi.org/10.1063/1.4832339

    Article  CAS  Google Scholar 

  7. R. Dasgupta, “A look into Cu-based shape memory alloys: Present scenario and future prospects,” J. Mater. Res. 29, 1681–1698 (2014). https://doi.org/10.1557/jmr.2014.189

    Article  CAS  Google Scholar 

  8. V. Pushin, S. Prokoshkin, R. Valiev, V. Brailovskii, E. Valiev, A. Volkov, A. Glezer, S. Dobatkin, V. Dudarev, Yu. Zhu, Yu. Zainulin, Yu. Kolobov, V. Kondrat’ev, A. Korolev, A. Korshunov, N. Kourov, N. Kudrevatykh, A. Lotkov, L. Meisner, A. Popov, N. Popov, A. Razov, M. Khusainov, Yu. Chumlyakov, S. Andreev, A. Baturin, S. Belyaev, V. Grishkov, D. Gunderov, A. Dyupin, K. Ivanov, V. Itin, M. Kasymov, O. Kashin, I. Kireeva, A. Kozlov, T. Kuntsevich, N. Kuranova, N. Pushina, E. Ryklina, A. Uksusnikov, I. Khmelevskaya, A. Shelyakov, V. Shklover, E. Shorokhov, and L. I. Yurchenko, Titanium Nickelide Shape Memory Alloys, Vol. 1: Structure, Phase Transitions and Properties (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2006).

  9. V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616 (2019). https://doi.org/10.3390/ma12162616

    Article  CAS  Google Scholar 

  10. A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, 374–382 (2018). https://doi.org/10.1134/S0031918X18040142

    Article  CAS  Google Scholar 

  11. A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belosludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, 1159–1165 (2019). https://doi.org/10.1134/S0031918X19120159

    Article  CAS  Google Scholar 

  12. A. E. Svirid, V. G. Pushin, N. N. Kuranova, E. S. Belosludtseva, A. V. Pushin, and A. V. Lukyanov, “The effect of plastification of Cu–14Al–4Ni alloy with the shape memory effect in high-temperature isothermal precipitation,” Tech. Phys. Lett. 46, 118–121 (2020). https://doi.org/10.1134/s1063785020020145

    Article  CAS  Google Scholar 

  13. A. E. Svirid, A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, and A. N. Uksusnikov, “Application of isothermal upset for megaplastic deformation of Cu–Al–Ni β alloys,” Tech. Phys. 65 (7), 1044–1050 (2020). https://doi.org/10.1134/s1063784220070245

    Article  CAS  Google Scholar 

  14. A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, and A. N. Uksusnikov, “The effect of heat treatment on the structure and mechanical properties of nanocrystalline Cu–14Al–3Ni alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 122, 883–890 (2021). https://doi.org/10.1134/s0031918x21090131

    Article  CAS  Google Scholar 

  15. V. Pushin, N. Kuranova, A. Svirid, A. Uksusnikov, and Yu. Ustyugov, “Design and development of high-strength and ductile ternary and multicomponent eutectoid Cu-based shape memory alloys: Problems and perspectives,” Metals 12, 1289 (2022). https://doi.org/10.3390/met12081289

    Article  CAS  Google Scholar 

  16. A. E. Svirid, N. N. Kuranova, V. V. Makarov, and V. G. Pushin, “The effect of boron addition on the structure and mechanical properties of Cu–Al–Ni–B alloys with a thermoelastic martensitic transformation,” Phys. Met. Metallogr. 124, 504–513 (2023). https://doi.org/10.1134/S0031918X23600549

    Article  CAS  Google Scholar 

  17. S. N. Saud, E. Hamzah, T. Abubakar, and H. R. Bakh-sheshi-Rad, “Correlation of microstructural and corrosion characteristics of quaternary shape memory alloys Cu–Al–Ni–X (X = Mn or Ti),” Trans. Nonferrous Met. Soc. China 25, 1158–1170 (2015). https://doi.org/10.1016/s1003-6326(15)63711-6

    Article  CAS  Google Scholar 

  18. G. Lojen, I. Anžel, A. Kneissl, A. Križman, E. Unterweger, B. Kosec, and M. Bizjak, “Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons,” J. Mater. Process. Technol. 162-163, 220–229 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.196

    Article  CAS  Google Scholar 

  19. F. C. Lovey, A. M. Condó, J. Guimpel, and M. J. Yacamán, “Shape memory effect in thin films of a Cu–Al–Ni alloy,” Mater. Sci. Eng., A 481482, 426–430 (2008). https://doi.org/10.1016/j.msea.2007.01.175

    Article  CAS  Google Scholar 

  20. Z. Li, Z. Pan, N. Tang, Y. Jiang, N. Liu, M. Fang, and F. Zheng, “Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy,” Mater. Sci. Eng., A 417, 225–229 (2006). https://doi.org/10.1016/j.msea.2005.10.051

    Article  CAS  Google Scholar 

  21. K. Mukunthan and L. C. Brown, “Preparation and properties of fine grain β-CuAlNi strain-memory alloys,” Metall. Trans. A 19, 2921–2929 (1988). https://doi.org/10.1007/bf02647718

    Article  Google Scholar 

  22. Z. Wang, X. Liu, and J. Xie, “Effects of solidification parameters on microstructure and mechanical properties of continuous columnar-grained Cu–Al–Ni alloy,” Prog. Nat. Sci.: Mater. Int. 21, 368–374 (2011). https://doi.org/10.1016/s1002-0071(12)60071-9

    Article  Google Scholar 

  23. Y. S. Sun, G. W. Lorimer, and N. Ridley, “Microstructure and its development in Cu–Al–Ni alloys,” Metall. Trans. A 21, 575–588 (1990). https://doi.org/10.1007/bf02671930

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank D.I. Davydov and S.V Afanas’ev for performed HTMT and mechanical tensile tests of the alloys.

Funding

The synthesis of the alloys, in particular, boron-alloyed compositions and the study of the effect of HTMT on the structure and mechanical properties were financially supported by the Russian Science Foundation, project no. 22-72-00056, https://rscf.ru/project/22-72-00056/IPM Ur RAN. The technology of HTMT of forged alloys was fulfilled in terms of state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme Struktura, no. 122021000033-2). The study was performed using equipment available in the Collective Access Testing Center for Nanotechnologies and Advanced Materials at the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Svirid.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svirid, A.E., Pushin, V.G., Makarov, V.V. et al. The Effect of High-Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Cu–Al–Ni–(B) Alloys with a Thermoelastic Martensitic Transformation. Phys. Metals Metallogr. 124, 710–718 (2023). https://doi.org/10.1134/S0031918X23600938

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600938

Keywords:

Navigation