Skip to main content
Log in

The Electrical Resistivity, Magnetic, and Galvanomagnetic Properties of a Cast and Rapid Melt Quenched Mn3Al Heusler Alloy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The electrical resistivity, magnetic, and galvanomagnetic properties of the cast and rapid melt quenched Mn3Al Heusler alloy have been studied. Rapid melt quenching was found to result in changing the microstructure of the Mn3Al alloy, which leads to substantial changes in its electronic transport and magnetic properties. It was suggested that for the cast and rapid melt quenched Mn3Al alloy frustrated antiferromagnetic and almost compensated ferrimagnetic state could appear, respectively. It is shown that the preparation and treatment of the Mn3Al compound plays a substantial role in the formation of its electronic and magnetic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. F. Heusler, “Über magnetische Manganlegierungen,” German. Verh. Deutsch. Phys. Ges 5, 219 (1903).

    CAS  Google Scholar 

  2. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46, 559–588 (2003). https://doi.org/10.1070/PU2003v046n06ABEH001339

    Article  CAS  Google Scholar 

  3. V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Mater. 12, 2616 (2019). https://doi.org/10.3390/ma12162616

    Article  CAS  Google Scholar 

  4. V. V. Sokolovskii, O. N. Miroshkina, and V. D. Buchel’nikov, “Review of modern theoretical approaches for study of magnetocaloric materials,” Phys. Met. Metallogr. 123, 319–374 (2022). https://doi.org/10.1134/S0031918X22040111

    Article  Google Scholar 

  5. R. L. Wang, J. B. Yan, L. S. Xu, V. V. Marchenkov, S. S. Chen, S. L. Tang, and C. P. Yang, “Effect of Al doping on the martensitic transition and magnetic entropy change in Ni–Mn–Sn alloys,” Sol. State Commun. 151, 1196 (2011). https://doi.org/10.1016/j.ssc.2011.04.005

    Article  CAS  Google Scholar 

  6. R. A. de Groot, F. M. Mueller, P. G. Mueller, P. G. van Engen, and K. H. J. Bushow, “New class of materials: Half-metallic ferromagnets,” Phys. Rev. Lett. 50, 2024–2027 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  CAS  Google Scholar 

  7. M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, R. A. de Groot, “Half-metallic ferromagnets: From band structure to many-body effects,” Rev. Mod. Phys. 80, 315–378 (2008). https://doi.org/10.1103/RevModPhys.80.315

    Article  CAS  Google Scholar 

  8. X. L. Wang, “Proposal for a new class of materials: Spin gapless semiconductors,” Phys. Rev. Lett. 100, 156404 (2008). https://doi.org/10.1103/PhysRevLett.100.156404

    Article  CAS  Google Scholar 

  9. X. T. Wang, Z. X. Cheng, J. L. Wang, X. L. Wang, and G. D. Liu, “Recent advances in the Heusler based spin-gapless semiconductors,” J. Mater. Chem. C 4, 7176 (2016). https://doi.org/10.1039/C6TC01343K

    Article  CAS  Google Scholar 

  10. K. Manna, Ya. Sun, L. Muechler, J. Kübler, and C. Felser, “Heusler, Weyl and Berry,” Nat. Mater. 3, 244–256 (2018). https://doi.org/10.1038/s41578-018-0036-5

    Article  CAS  Google Scholar 

  11. V. V. Marchenkov and V. Yu. Irkhin, “Half-metallic ferromagnets, spin gapless semiconductors, and topological semimetals based on Heusler alloys: Theory and experiment,” Phys. Met. Metallogr. 122, 1133–1157 (2021). https://doi.org/10.1134/S0031918X21120061

    Article  CAS  Google Scholar 

  12. V. V. Marchenkov, V. Yu. Irkhin, and A. A. Semiannikova, “Unusual kinetic properties of usual Heusler alloys,” J. Supercond. Nov. Magn. 35, 2153–2168 (2022). https://doi.org/10.1007/s10948-022-06342-1

    Article  CAS  Google Scholar 

  13. S. Chatterjee, S. Chatterjee, S. Giri, and S. Majumdar, “Transport properties of Heusler compounds and alloys,” J. Phys.: Condens. Matter 34, 013001 (2022). https://doi.org/10.1088/1361-648X/ac268c

    Article  CAS  Google Scholar 

  14. I. Gavrikov, M. Seredina, M. Zheleznyy, I. Shchetinin, D. Karpenkov, A. Bogach, R. Chatterjee, and V. Khovaylo, “Magnetic and transport properties of Mn2FeAl,” J. Magn. Magn. Mater. 478, 55–58 (2019). https://doi.org/10.1016/j.jmmm.2019.01.088

    Article  CAS  Google Scholar 

  15. Sh. Dash, A. V. Lukoyanov, Nancy, D. Mishra, U. P. M. Rasi, R. B. Gangineni, M. Vasundhara, and A. K. Patra, “Structural stability and magnetic properties of Mn2FeAl alloy with a β-Mn structure,” J. Magn. Magn. Mater. 513, 167205 (2020). https://doi.org/10.1016/j.jmmm.2020.167205

    Article  CAS  Google Scholar 

  16. V. Yu. Irkhin and Yu. N. Skryabin, “Two-band model and RVB-type states: Application to Kondo lattices, pyrochlores and Mn-based systems,” Phys. A 633, 413780 (2022). https://doi.org/10.1016/j.physb.2022.413780

    Article  CAS  Google Scholar 

  17. M. E. Jamer, Y. J. Wang, G. M. Stephen, I. J. McDonald, A. J. Grutter, G. E. Sterbinsky, D. A. Arena, J. A. Borchers, B. J. Kirby, L. H. Lewis, B. Barbiellini, A. Bansil, and D. Heiman, “Compensated ferrimagnetism in the zero-moment Heusler alloy Mn3Al,” Phys. Rev. Appl. 7, 064036 (2017). https://doi.org/10.1103/PhysRevApplied.7.064036

    Article  Google Scholar 

  18. V. V. Marchenkov, V. Yu. Irkhin, Yu. A. Perevozchikova, P. B. Terent’ev, A. A. Semiannikova, E. B. Marchenkova, and M. Eisterer, “Kinetic properties and half-metallic magnetism in Mn2 YAl Heusler alloys,” J. Exp. Theor. Phys. 128, 919–925 (2019). https://doi.org/10.1134/S1063776119060049

    Article  CAS  Google Scholar 

  19. A. Aryal, S. Bakkar, H. Samassekou, S. Pandey, I. Dubenko, Sh. Stadler, N. Ali, and D. Mazumdar, “Mn2FeSi: An antiferromagnetic inverse-Heusler alloy,” J. Alloys Compd. 823, 153770 (2020). https://doi.org/10.1016/j.jallcom.2020.153770

    Article  CAS  Google Scholar 

  20. H. Takatsu, H. Yoshizawa, Sh. Yonezawa, and Yo. Maeno, “Critical behavior of the metallic triangular-lattice Heisenberg antiferromagnet PdCrO2,” Phys. Rev. B 79, 104424 (2009). https://doi.org/10.1103/PhysRevB.79.104424

    Article  CAS  Google Scholar 

  21. E. V. Komleva, V. Yu. Irkhin, I. V. Solovyev, M. I. Katsnelson, and S. V. Streltsov, “Unconventional magnetism and electronic state in the frustrated layered system PdCrO2,” Phys. Rev. B 102, 174438 (2020). https://doi.org/10.1103/PhysRevB.102.174438

    Article  CAS  Google Scholar 

  22. M. G. Kostenko and A. V. Lukoyanov, “Magnetic properties and electronic structure of Mn–Al alloys in the β-Mn structure,” J. Magn. Magn. Mater. 542, 168600 (2022). https://doi.org/10.1016/j.jmmm.2021.168600

    Article  CAS  Google Scholar 

  23. Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, Sh. Dash, A. K. Patra, and M. Vasundkhara, “Electronic structure and spectral characteristics of the Mn3Al compound,” Phys. Met. Metallogr. 122, 954–959 (2021). https://doi.org/10.1134/S0031918X21100045

    Article  CAS  Google Scholar 

  24. L. Wollmann, S. Chadov, J. Kübler, and C. Felser, “Magnetism in cubic manganese-rich Heusler compounds,” Phys. Rev. B 90, 214420 (2014). https://doi.org/10.1103/PhysRevB.90.214420

    Article  CAS  Google Scholar 

  25. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971).

    Google Scholar 

  26. N. I. Kourov, V. G. Pushin, A. V. Korolev, V. V. Marchenkov, E. B. Marchenkova, V. A. Kazantsev, and H. W. Weber, “Effect of severe plastic deformation by torsion on the properties and structure of the Ni54Mn21Ga25 and Ni54Mn20Fe1Ga25 alloys,” Phys. Solid State 53, 91–99 (2011). https://doi.org/10.1134/S1063783411010136

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank P.B. Terent’ev, D.A. Shishkin, and V.N. Neverov for their assistance and fruitful discussions.

Funding

The studies were performed in terms of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (themes Structure, no. 122021000033-2 and Spin, no. 122021000036-3). The synthesis of alloy and RMQ tapes and studies of electronic transport and magnetic properties were supported by the Russian Science Foundation (project no. 22-22-00935, https://rscf.ru/project/22-22-00935/, Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Marchenkov or A. A. Semiannikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenkov, V.V., Irkhin, V.Y., Semiannikova, A.A. et al. The Electrical Resistivity, Magnetic, and Galvanomagnetic Properties of a Cast and Rapid Melt Quenched Mn3Al Heusler Alloy. Phys. Metals Metallogr. 124, 321–327 (2023). https://doi.org/10.1134/S0031918X23600318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600318

Keywords:

Navigation