Skip to main content
Log in

Nanocomposites with Magnetic Core–Gold Shell Structure for Photothermia

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structural, magnetic, and optical properties of mesoscale particles in the form of Au/Fe/Au layered disks and Ni@Au nanotubes have been studied. The disks were produced by electron-beam lithography followed by deposition of functional layers. Ni nanotubes were obtained by template synthesis using electrochemical deposition into pores of ion track membranes. They were removed from the templates and the resulting powders were covered with gold by chemical modification. Ferromagnetic structures coated with plasmonic metals demonstrate a high photothermal conversion efficiency in the region of plasmon resonance. Together with their magnetic properties, such as the vortex magnetic state, these structures are promising for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. H. Zenga, S. Sun, J. Li, Z. L. Wang, and J. P. Liu, “Tailoring magnetic properties of core/shell nanoparticles,” Appl. Phys. Lett. 25, 792–794 (2004).

    Article  Google Scholar 

  2. L. Kafrouni and O. Savadogo, “Recent progress on magnetic nanoparticles for magnetic hyperthermia,” Prog. Biomater. 5, 147–160 (2016).

    Article  CAS  Google Scholar 

  3. R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, “Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy,” J. Phys.: Condens. Matter 18, S2919–S2934 (2006).

    CAS  Google Scholar 

  4. J.-P., C. Fortin, J. Servais, C. Ménager, J.-C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc. 129, 2628–2635 (2007).

    Article  Google Scholar 

  5. R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field,” J. Magn. Magn. Mater. 252, 370–374 (2002).

    Article  CAS  Google Scholar 

  6. R. Hergt and S. Dutz, “Magnetic particle hyperthermia–biophysical limitations of a visionary tumour therapy,” J. Magn. Magn. Mater. 311, 187–191 (2007).

    Article  CAS  Google Scholar 

  7. P. Pradhan, J. Giri, G. Samanta, H. D. Sarma, K. P. Mishra, J. Bellare, R. Banerjee, and D. Bahadur, “Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application,” J. Biomed. Mater. Res. B 81, 12–22 (2007).

    Article  Google Scholar 

  8. J.-H. Lee, J.-T. Jang, J.-S. Choi, S.-H. Moon, S.‑H. Noh, J.-W. Kim, J.-G. Kim, K.-I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6, 418–422 (2011).

    Article  CAS  Google Scholar 

  9. M. V. Efremova, V. A. Naumenko, M. Spasova, A. S. Garanina, M. A. Abakumov, A. D. Blokhina, et al., “Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics,” Sci. Rep. 8, 11295 (2018).

    Article  Google Scholar 

  10. A. Espinosa, R. Di. Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, and C. Wilhelm, “Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment,” ACS Nano. 10, 2436 (2016).

    Article  CAS  Google Scholar 

  11. Y. Cheng, M. E. Muroski, D. Petit, R. Mansell, T. Vemulkar, R. A. Morshed, Y. Han, I. V. Balyasnikova, C. M. Horbinski, X. Huang, L. Zhang, R. P. Cowburn, and M. S. Lesniak, “Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma,” J. Controlled Release 223, 75–84 (2016).

    Article  CAS  Google Scholar 

  12. A. Espinosa, J. Kolosnjaj-Tabi, A. Abou-Hassan, A. Plan Sangnier, A. Curcio, A. K. A. Silva, R. Di Corato, S. Neveu, T. Pellegrino, L. M. Liz-Marzán, et al., “Magnetic (Hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo,” Adv. Funct. Mater. 28, 1–16 (2018).

    Article  Google Scholar 

  13. T.-H. Shin, Y. Choi, S. Kim, and J. Cheon, “Recent advances in magnetic nanoparticle-based multi-modal imaging,” Chem. Soc. Rev. 44, 4501–4516 (2015).

    Article  CAS  Google Scholar 

  14. A. B. A. Nana, T. Marimuthu, P. P. D. Kondiah, Y. E. Choonara, ToitL. C. Du, and V. Pillay, “Multifunctional magnetic nanowires: Design, fabrication, and future prospects as cancer therapeutics,” Cancers 11, 1956–1979 (2019).

    Article  CAS  Google Scholar 

  15. D. Lisjak and A. Mertelj, “Anisotropic magnetic nanoparticles: a review of their properties, syntheses and potential applications,” Prog. Mater. Sci. 95, 286–328 (2018).

    Article  CAS  Google Scholar 

  16. D. -H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, and V. Novosad, “Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction,” Nat. Mater. 9, 165 (2010).

    Article  CAS  Google Scholar 

  17. S. L. Pichot, S. Bentouati, S. S. Ahmad, M. Sotiropoulo, R. Jena, and R. Cowburn, “Versatile magnetic microdiscs for the radio enhancement and mechanical disruption of glioblastoma cancer cells,” RSC Adv. 10, 8161–8171 (2020).

    Article  Google Scholar 

  18. K. Pondman, W. Maijenburg, B. Celikkol, A. A. Pathan, U. Kishore, B. Ten Haken, and A. Ten Elshof, “Au coated Ni nanowires with tuneable dimensions for biomedical applications,” J. Mater. Chem. 1, 6129–6136 (2013).

    CAS  Google Scholar 

  19. V. Amendola, R. Pilot, M. Frasconi1, M. O. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29, 203002–203050 (2017).

    Google Scholar 

  20. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929 (2007).

    Article  CAS  Google Scholar 

  21. G. Maltzahn, A. Centrone, J.-H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21, 3175 (2009).

    Article  Google Scholar 

  22. S. E. Lee, G. L. Liu, F. Kim, and L. P. Lee, “Remote optical switch for localized and selective control of gene interference,” Nano Lett. 9, 562 (2009).

    Article  CAS  Google Scholar 

  23. M. Bikram, A. M. Gobin, R. E. Whitmire, and J. L. West, “Temperature-sensitive hydrogels with SiO2–Au nanoshells for controlled drug delivery,” J. Controlled Release 123, 219 (2007).

    Article  CAS  Google Scholar 

  24. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).

    Article  Google Scholar 

  25. D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J. Phys. Chem. 111, 36-36-3641 (2007).

  26. I. V. Korolkov, Y. G. Gorin, A. B. Yeszhanov, A. L. Kozlovskiy, and M. V. Zdorovets, “Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization,” Mater. Chem. Phys. 205, 55–63 (2018).

    Article  CAS  Google Scholar 

  27. T. Miyazaki and M. Takenaka, “Precise small-angle X‑ray scattering evaluation of the pore structures in track-etched membranes: Comparison with other convenient evaluation methods,” Nucl. Instrum. Methods Phys. Res. B 394, 121–125 (2017).

    Article  CAS  Google Scholar 

  28. L. A. Osminkina, O. Zukovskaja, S. N. Agafilushkina, O. Stranik, K. A. Gonchar, D. Yakimchuk, D. A. Chermoshentsev, S. A. Dyakov, A. Nikolay, K. Weber, J. Popp, D. C. May, and V. Sivakov, “Gold nanoflowers grown in a porous Si/SiO2 matrix: The fabrication process and plasmonic properties,” Appl. Surf. Sci. 507, 144989 (2019).

    Article  Google Scholar 

  29. A. Shumskaya, I. Korolkov, A. Rogachev, Zh. Ignatovich, A. Kozlovskiy, M. Zdorovets, M. Anisovich, M. Bashouti, A. Shalabny, R. Busool, S. Khubezhov, D. Yakimchuk, V. Bundyukova, L. V. Panina, and E. Kaniukov, “Synthesis of Ni@Au core-shell magnetic nanotubes for bioapplication and SERS detection,” Colloids Surf. A 626, 127077 (2021).

    Article  CAS  Google Scholar 

  30. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6, 2272–2280 (2010).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-72-20158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Panina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panina, L.V., Belyaev, V.K., Anikin, A. et al. Nanocomposites with Magnetic Core–Gold Shell Structure for Photothermia. Phys. Metals Metallogr. 123, 1185–1192 (2022). https://doi.org/10.1134/S0031918X22601597

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601597

Keywords:

Navigation