Skip to main content
Log in

Kinetic Properties of a Topological Semimetal WTe2 Single Crystal

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Electrical resistivity, magnetoresistivity, and the Hall effect have been studied in a single crystal of topological semimetal WTe2 in the temperature range from 12 to 200 K under magnetic fields up to 9 T. A quadratic temperature dependence of the electrical resistivity in the absence of field and conductivity in a magnetic field is found at low temperatures, which appears to be associated with contributions from various scattering mechanisms. Single-band and two-band models were used to analyze data on the Hall effect and magnetoresistivity. These results indicate electron–hole compensation with a slight predominance of electron charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, “A complete catalogue of high-quality topological materials,” Nature 566, 480–485 (2019).

    Article  CAS  Google Scholar 

  2. Y. Liu, C. Chong, W. Chen, J. A. Huang, C. Cheng, K. Tsuei, Z. Li, H. Qiu, and V. V. Marchenkov, “Growth and characterization of MBE-grown (Bi1 ‒ xSbx)2Se3 topological insulator,” Jpn. J. Appl. Phys. 56, 070311 (2017).

    Article  Google Scholar 

  3. B. Yan and C. Felser, “Topological materials: Weyl semimetals,” Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  Google Scholar 

  4. N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and Dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018).

    Article  CAS  Google Scholar 

  5. A. Bernevig, H. Weng, Z. Fang, and X. Dai, “Recent progress in the study of topological semimetals,” J. Phys. Soc. Jpn. 87, 041001 (2018).

    Article  Google Scholar 

  6. B. Q. Lv, T. Qian, and H. Ding, “Experimental perspective on three-dimensional topological semimetals,” Rev. Mod. Phys. 93 (2), 025002 (2021).

    Article  CAS  Google Scholar 

  7. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a Weyl fermion semimetal and topological Fermi arcs,” Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  8. A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, “Type-II Weyl semimetals,” Nature 527, 495–498 (2015).

    Article  CAS  Google Scholar 

  9. C. Wang, Y. Zhang, J. Huang, S. Nie, G. Liu, A. Liang, Y. Zhang, B. Shen, J. Liu, C. Hu, Y. Ding, D. Liu, Y. Hu, S. He, L. Zhao, L. Yu, J. Hu, J. Wei, Z. Mao, Y. Shi, X. Jia, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, H. Weng, X. Dai, Z. Fang, Z. Xu, C. Chen, and X. J. Zhou “Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2,” Phys. Rev. B 94, 241119 (2016).

    Article  Google Scholar 

  10. I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S.-Y. Xu, G. Chang, T. R. Chang, H. Zheng, N. Alidoust, G. Bian, M. Neupane, S.-M. Huang, C.‑C. Lee, Y. Song, H. Bu, G. Wang, S. EdaG. Li, H.‑T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Song, S. Shin, and M. Z. Hasan, “Discovery of a new type of topological Weyl fermion semimetal state in MoxW1 – xTe2,” Nat. Commun. 7, 13643 (2016).

    Article  CAS  Google Scholar 

  11. Y.-Y. Lv, L. Cao, X. Li, B.-B. Zhang, K. Wang, B. Pang, L. Ma, D. Lin, S.-H. Yao, J. Zhou, Y. B. Chen, S.-T. Dong, W. Liu, M.-H. Lu, Y. Chen, and Y.-F. Chen, “Composition and temperature-dependent phase transition in miscible Mo1 – xWxTe2 single crystals,” Sci. Rep. 7, 44587 (2017).

    Article  Google Scholar 

  12. T. Zandt, H. Dwelk, C. Janowitz, and R. Manzke, “Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2,” J. Alloys Compd. 442 (1–2), 216–218 (2007).

    Article  CAS  Google Scholar 

  13. C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, “Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP,” Nat. Phys. 11, 645–649 (2015).

    Article  CAS  Google Scholar 

  14. Y. Luo, H. Li, Y. M. Dai, H. Miao, Y. G. Shi, H. Ding, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, and J. D. Thompson, “Hall effect in the extremely large magnetoresistance semimetal WTe2,” Appl. Phys. Lett. 107, 182411 (2015).

    Article  Google Scholar 

  15. F. Levy, “Single-crystal growth of layered crystals,” IL Nuovo Cimento B (1971–1996) 38 (2), 359–368 (1977).

  16. V. E. Startsev, V. P. D’yakina, V. I. Cherepanov, N. V. Volkenshtein, R. Sh. Nasyrov, and V. G. Manakov, “Quadratic temperature dependence of the resistivity of tungsten single crystals. Role of surface scattering of electrons,” Sov. Phys. JETP 52 (4), 675–679 (1980).

    Google Scholar 

  17. I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971).

    Google Scholar 

  18. J. E. Callanan, G. A. Hope, R. D. Weir, and E. F. Westrum, Jr., “Thermodynamic properties of tungsten ditelluride (WTe2) I. The preparation and low temperature heat capacity at temperatures from 6 K to 326 K,” J. Chem. Thermodyn. 24 (6), 627–638 (1992).

    Article  CAS  Google Scholar 

  19. V. V. Marchenkov, A. N. Perevalova (Domozhirova), S. V. Naumov, S. M. Podgornykh, E. B. Marchenkova, V. V. Chistyakov, and J. C. A. Huang, “Peculiarities of electronic transport in WTe2 single crystal,” J. Magn. Magn. Mater. 549, 168985 (2022).

    Article  CAS  Google Scholar 

  20. V. V. Marchenkov, “Quadratic temperature dependence of magnetoresistivity of pure tungsten single crystals under static skin effect,” Low Temp. Phys. 37, 852 (2011).

    Article  CAS  Google Scholar 

  21. V. I. Cherepanov, V. E. Startsev, and N. V. Volkenshtein, “Influence of anisotropy of electron-phonon scattering on the Hall effect in molybdenum,” Fiz. Nizk. Temp. 5 (10), 1162–1168 (1979).

    CAS  Google Scholar 

  22. N. V. Volkenshtein, V. E. Startsev, and V. I. Cherepanov, “Low temperature anomalies of the Hall Effect in tungsten,” Phys. Status Solidi B 89 (1), K53–K56 (1978).

    Article  CAS  Google Scholar 

  23. N. V. Volkenshtein, M. Glinski, V. V. Marchenkov, V. E. Startsev, and A. N. Cherepanov, “Characteristics of galvanomagnetic properties of compensated metals under static skin effect conditions in strong magnetic fields (tungsten),” Zh. Eksp. Teor. Fiz. 95, 2103–2116 (1989).

    CAS  Google Scholar 

  24. A. N. Cherepanov, V. V. Marchenkov, V. E. Startsev, N. V. Volkenshtein, and M. Glin’skii, “High-field galvanomagnetic properties of compensated metals under electron-surface and intersheet electron-phonon scattering (tungsten),” J. Low Temp. Phys. 80 (3/4), 135–151 (1990).

    Article  CAS  Google Scholar 

  25. X.-C. Pan, Y. Pan, J. Jiang, H. Zuo, H. Liu, X. Chen, Z. Wei, S. Zhang, Z. Wang, X. Wan, Z. Yang, D. Feng, Z. Xia, L. Li, F. Song, B. Wang, Y. Zhang, and G. Wang, “Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2,” Front. Phys. 12 (3), 127203 (2017).

    Article  Google Scholar 

  26. V. V. Chistyakov, A. N. Perevalova, and V. V. Marchenkov, Certificate of State Registration of the Computer Program No. 2022660290 (2022).

Download references

ACKNOWLEDGMENTS

The authors thank N.G. Bebenin for the useful discussion of the obtained results and valuable advices on their presentation.

Funding

Electrical resistivity studies (sect. 3.1) were performed within the framework of State assignment of the Ministry of Science and Higher Education of the Russian Federation (theme Spin, no. 122021000036-3), supported in part by the Scholarship of the President of the Russian Federation to young scientists and graduate students (A.N. Perevalova, SP-2705.2022.1). Studies on the magnetoresistivity (sect. 3.2) and the Hall effect (section 3.3) were supported by the Russian Science Foundation (grant no. 22-42-02021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Marchenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalova, A.N., Naumov, S.V., Podgornykh, S.M. et al. Kinetic Properties of a Topological Semimetal WTe2 Single Crystal. Phys. Metals Metallogr. 123, 1061–1067 (2022). https://doi.org/10.1134/S0031918X22601329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601329

Keywords:

Navigation