Skip to main content
Log in

The Effect of Thermomechanical Treatment on the Structure and Mechanical Properties of the Ti49.5Ni50.5 Shape-Memory Alloy

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of thermomechanical treatment on the structure and phase transformations of the Ti–50.5 at % Ni shape-memory alloy was studied. The data on the specific features of mechanical properties and character of fracture in the initial ultrafine-grained (UFG) alloy were gained by tension tests in combination with optical and electron microscopy and X-ray diffraction analysis. The UFG alloy structure was created by multipass plastic rolling deformation. The alloy was established to have high levels of its mechanical properties (ultimate strength of up to 1400 MPa at a relative elongation of more than 25%) due to the revealed effect of a complex reaction: recrystallization with the formation of a UFG structure and associated highly dispersed heterogeneous decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Shape Memory Effects in Alloys, Ed. by J. Perkins (Plenum, London, 1975).

    Google Scholar 

  2. K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Khomma, S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  3. Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman (Butterworth-Heineman, London, 1990).

    Google Scholar 

  4. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  5. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pre-Transitional Phenomena and Martensitic Transformations (UrBr RAS, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  6. E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008).

    Article  Google Scholar 

  7. J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012).

    Article  Google Scholar 

  8. J. Cui, “Shape memory alloys and their applications in power generation and refrigeration,” In Mesoscopic Phenomena in Multifunctional Materials, Ed. by A. Saxena and A. Planes (Springer, Berlin, 2014), pp. 289–307.

    Google Scholar 

  9. S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and I. Yu. Khmelevskaya, “Application of titanium nickelide–based alloys in medicine,” Phys. Met. Metallogr. 97, 56–96 (2004).

    Google Scholar 

  10. J. Wilson and M. Weselowsky, “Shape memory alloys for seismic response modification: A state-of-the-art review,” Earthquake Spectra 21, 569–601 (2005).

    Article  Google Scholar 

  11. T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Medical Applications (Wordhead, Cambridge, 2009).

    Book  Google Scholar 

  12. J. Dong, C. Cai, and A. O’Keil, “Overview of potential and existing applications of shape memory alloys in bridges,” J. Bridge Eng. 16, 305–315 (2011).

    Article  Google Scholar 

  13. V. G. Pushin, “Alloys with a thermomechanical memory: Structure, properties, and application,” Phys. Met. Metallogr. 90 (Suppl. 1), S68–S95 (2000).

    Google Scholar 

  14. V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation,” Ann. Chim. Sci. Mat. 27, 77–88 (2002).

    Article  CAS  Google Scholar 

  15. R. Z. Valiev and V. G. Pushin, “Bulk Nanostructured metallic materials: Production, structure, properties and functioning,” Phys. Met. Metallogr. 94, S1–S4 (2002).

    Google Scholar 

  16. V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Development of methods of severe plastic deformation for the production of high-strength alloys based on titanium nickelide with a shape memory effect,” Phys. Met. Metallogr. 94, S54–S68 (2002).

    Google Scholar 

  17. V. G. Pushin and R. Z. Valiev, “The nanostructured TiNi shape-memory alloys: New properties and applications,” Solid State Phenom. 94, 13–24 (2003).

    Article  CAS  Google Scholar 

  18. V. G. Pushin, R. Z. Valiev, and L. I. Yurchenko, “Processing of nanostructured TiNi-shape memory alloys: Methods, structures, properties, application,” J. Phys. IV 112, 659–662 (2003).

    CAS  Google Scholar 

  19. V. G. Pushin, “Structure, properties, and application of nanostructures shape memory TiNi-based alloys,” in Nanomaterials by Severe Plastic Deformation (Wiley, Weinheim, 2004), pp. 822–828.

    Google Scholar 

  20. V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, “Foundation of heat and thermomechanical treatments and their on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr. 97, S3–S55 (2004).

    Google Scholar 

  21. V. G. Pushin, R. Z. Valiev, Y. T. Zhu, D. V. Gunderov, N. I. Kourov, T. E. Kuntsevich, A. N. Uksusnikov, and L. I. Yurchenko, “Effect of severe plastic deformation on the behavior of Ti–Ni shape memory alloys,” Mater. Trans. 47, 694–697 (2006).

    Article  CAS  Google Scholar 

  22. R. Z. Valiev, D. V. Gunderov, and V. G. Pushin, “The new SPD processing routes to fabricate bulk nanostructured materials,” in Ultrafine Grained Materials IV. TMS (The Minerals, Metals & Materials Society), Ed. By Y. T. Zhu, T. G. Langdon, S. L. Semiatin, Z. Horita, M. J. Zehetbauer, and T. C. Lowe (Warrendale, 2006), pp. 105–112.

  23. V. G. Pushin, R. Z. Valiev, Y. T. Zhu, S. Prockoshkin, D. V. Gunderov, and L. I. Yurchenko, “Effect of equal channel angular pressing and repeated rolling on structure, phase transformation and properties of TiNi shape memory alloys,” Mater. Sci. Forum 503504, 539–544 (2006).

    Article  Google Scholar 

  24. R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, and Yu. Zhu, “Nanostructuring of TiNi alloy by SPD processing for advanced properties,” Mater. Trans. 49, 97–101 (2008).

    Article  CAS  Google Scholar 

  25. N. N. Kuranova, D. V. Gunderov, A. N. Uksusnikov, A. V. Luk’yanov, L. I. Yurchenko, E. A. Prokof’ev, V. G. Pushin, and R. Z. Valiev, “Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by Torsion,” Phys. Met. Metallogr. 108, 556–568 (2009).

    Article  Google Scholar 

  26. S. Prokoshkin, V. Brailivski, A. Korotitskiy, K. Inaekyan, S. Dubinsky, M. Filonov, and M. Petrzhic, “Formation of nanostructures in thermo-mechanically-treated Ti–Ni and Ti–Nb–(Zr,Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior,” J. Alloy. Comp. 509, 2066–2075 (2011).

    Google Scholar 

  27. K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, and M. Umimota, “Production of TiNi amorphous/nanocrystalline wires with high-strength and elastic modulus by severe cold drawing,” Scr. Mater. 60, 749–752 (2009).

    Article  CAS  Google Scholar 

  28. A. I. Lotkov, V. N. Grishkov, A. A. Baturin, E. F. Dudarev, D. Yu. Zhapova, and V. N. Timkin, “The effect of warm deformation by abc-pressing on the mechanical properties of titanium nickelide,” Lett. Mater. 5, 170–174 (2015).

    Article  Google Scholar 

  29. V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried on the scientific equipment of the Collaborative Access Center of the Institute of Metal Physics (Ural Branch, Russian Academy of Sciences).

Funding

This study was performed within the framework of state assignment (code “Structure”) (grant no. 122021000033-2) to the Institute of Metal Physics (Ural Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pushin.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuranova, N.N., Makarov, V.V. & Pushin, V.G. The Effect of Thermomechanical Treatment on the Structure and Mechanical Properties of the Ti49.5Ni50.5 Shape-Memory Alloy. Phys. Metals Metallogr. 123, 996–1003 (2022). https://doi.org/10.1134/S0031918X22600993

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22600993

Keywords:

Navigation