Skip to main content
Log in

The Effect of Selective Laser Melting Conditions on the Structure of an Alnico Alloy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of main parameters of the selective laser melting (SLM) process on the structure and properties of permanent magnets made from an Alnico alloy is studied. Series of samples were prepared using various combinations of SLM conditions and spherical powder particles of an Alnico alloy prepared by melt spraying. A suitable range of manufacturing parameters is determined, which allows us to fabricate permanent magnets with an optimum structure. Conclusions about the effect of the main parameters of the SLM process on the surface morphology of the deposited alloy are inferred. The optimization of scanning conditions allows us to decrease the cracking and, therefore, to reach a high level of physical and mechanical properties of Alnico alloy samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. Jaćimović, F. Binda, L. G. Herrmann, F. Greuter, J. Genta, M. Calvo, T. Tomše, and R. A. Simon, “Net shape 3D printed NdFeB permanent magnet,” Adv. Eng. Mater. 19, 1700098 (2017). https://doi.org/10.1002/adem.201700098

    Article  CAS  Google Scholar 

  2. A. S. Zhukov, B. K. Barakhtin, V. V. Bobyr, P. A. Kuznetsov, and I. V. Shakirov, “The experience of magnets manufacturing from metal powder using a laser,” J. Phys. Conf. Ser. 1791, 012122 (2021).

    Article  CAS  Google Scholar 

  3. F. Bittner, J. Thielsch, and W. G. Drosse, “Laser powder bed fusion of Nd–Fe–B permanent magnets,” Prog. Addit. Manuf. 5, 3–9 (2020). https://doi.org/10.1007/s40964-020-00117-7

    Article  Google Scholar 

  4. V. Chaudhary, S. A. Mantri, R. V. Ramanujan, and R. Banerjee, “Additive manufacturing of magnetic materials,” Prog. Mater. Sci. 114, 100688 (2020). ISSN 0079-6425. https://doi.org/10.1016/j.pmatsci.2020.100688

  5. E. A. Périgo, J. Jacimovic, F. García Ferré, and L. M. Scherf, “Additive manufacturing of magnetic materials,” Addit. Manuf. 30, 100870 (2019). https://doi.org/10.1016/j.addma.2019.100870

    Article  CAS  Google Scholar 

  6. A. B. Baldissera, P. Pavez, P. A. P. Wendhausen, C. H. Ahrens, and J. M. Mascheroni, “Additive manufacturing of bonded Nd–Fe–B–effect of process parameters on magnetic properties,” IEEE Trans Magn. 53, 1–4 (2017). https://doi.org/10.1109/TMAG.2017.2715722

    Article  Google Scholar 

  7. L. Li, A. Tirado, I. C. Nlebedim, O. Rios, B. Post, V. Kunc, R. R. Lowden, E. Lara-Curzio, R. Fredette, J. Ormerod, T. A. Lograsso, and M. P. Paranthaman, “Big area additive manufacturing of high performance bonded NdFeB magnets,” Sci. Rep. 6, 36212 (2016).

    Article  CAS  Google Scholar 

  8. T. Kolb, F. Huber, B. Akbulut, C. Donocik, N. Urban, D. Maurer, and J. Franke, “Laser beam melting of NdFeB for the production of reare-earth magnets,” Proc. EDCP Conf. (2016). https://doi.org/10.1109/EDPC.2016.7851311

  9. C. Huber, H. Sepehri-Amin, M. Goertler, M. Groenefeld, Iu. Teliban, K. Hono, and D. Suess, “Coercivity enhancement of selective laser sintered NdFeB magnets by grain boundary infiltration,” Acta Mater. 172, 66–71 (2019). https://doi.org/10.1016/j.actamat.2019.04.037

    Article  CAS  Google Scholar 

  10. D. Goll, D. Vogelgsang, U. Pflanz, D. Hohs, T. Grubesa, J. Schurr, T. Bernthaler, D. Kolb, H. Riegel, and G. Schneider, “Refining the microstructure of Fe–Nd–B by selective laser melting,” Phys. Status Solidi 13, 1800536 (2019). https://doi.org/10.1002/pssr.201800536

    Article  CAS  Google Scholar 

  11. N. Urban, A. Meyer, S. Kreitlein, F. Leicht, and J. Franke, “Efficient near net-shape production of high energy rare earth magnets by laser beam melting,” Appl. Mech. Mater. 871, 137–144 (2017). https://doi.org/10.4028/www.scientific.net/AMM.871.137

    Article  Google Scholar 

  12. A. S. Volegov, S. V. Andreev, N. V. Selezneva, I. A. Ryzhikhin, N. V. Kudrevatykh, L. Mädler, and I. V. Okulov, “Additive manufacturing of heavy rare earth free high-coercivity permanent magnets,” Acta Mater. 188, 733–739 (2020). https://doi.org/10.1016/j.actamat.2020.02.058

    Article  CAS  Google Scholar 

  13. C. Huber, G. Mitteramskogler, M. Goertler, Iu. Teliban, M. Groenefeld, and D. Suess, “Additive manufactured polymer-bonded isotropic ndfeb magnets by stereolithography and their comparison to fused filament fabricated and selective laser sintered magnets,” Materials 13, 1916 (2020). https://www.mdpi.com/1996-1944/ 13/8/1916.

    Article  CAS  Google Scholar 

  14. E. White, E. Rinko, T. Prost, T. Horn, C. Ledford, C. Rock, and I. Anderson, “Processing of alnico magnets by additive manufacturing,” Appl. Sci. 9, 4843 (2019). https://doi.org/10.3390/app9224843

    Article  CAS  Google Scholar 

  15. I. A. Radulov, V. V. Popov, A. Koptyug, F. Maccari, A. Kovalevsky, S. Essel, J. Gassmann, K. P. Skokov, and M. Bamberger, “Production of net-shape Mn–Al permanent magnets by electron beam melting,” Addit. Manuf. 30, 100787 (2019). https://doi.org/10.1016/j.addma.2019.100787

    Article  CAS  Google Scholar 

  16. M. S. K. K. Y. Nartu, S. Dasari, A. Sharma, V. Chaudhary, S. M. Varahabhatla, S. A. Mantri, E. Ivanov, R. V. Ramanujan, N. B. Dahotre, and R. Banerjee, “Reducing coercivity by chemical ordering in additively manufactured soft magnetic Fe–Co (Hiperco) alloys,” J. Alloys Compd. 861, 157998 (2021). https://doi.org/10.1016/j.jallcom.2020.157998

    Article  CAS  Google Scholar 

  17. V. Chaudhary, N. M. S. K. K. Yadav, S. A. Mantri, S. Dasari, A. Jagetia, R. V. Ramanujan, and R. Banerjee, “Additive manufacturing of functionally graded Co–Fe and Ni–Fe magnetic materials,” J. Alloys Compd. 823, 153817 (2020). https://doi.org/10.1016/j.jallcom.2020.153817

    Article  CAS  Google Scholar 

  18. E. M. H. White, A. G. Kassen, E. Simsek, W. Tang, R. T. Ott, and I. E. Anderson, “Net shape processing of alnico magnets by additive manufacturing,” IEEE Trans. Magn. 53, No. 11, 2101606 (2017).

    Article  Google Scholar 

  19. R. Skomski, P. Manchanda, P. Kumar, B. Balamurugan, A. Kashyap, and D. J. Sellmyer, “Predicting the future of permanent-magnet materials,” IEEE Trans. Magn. 49, No. 7, 3215–3220 (2013). https://doi.org/10.1109/TMAG.2013.2248139

    Article  CAS  Google Scholar 

  20. P. F. Rottmann, A. T. Polonsky, T. Francis, M. G. Emigh, M. Krispin, G. Rieger, McL. P. Echlin, C. G. Levi, and T. M. Pollock, “TriBeam tomography and microstructure evolution in additively manufactured Alnico magnets,” Mater. Today 49, 23–34 (2021). https://doi.org/10.1016/j.mattod.2021.05.003

    Article  CAS  Google Scholar 

  21. L. Zhou, M. K. Miller, Lu. Ping, Ke. Liqin, R. Skomski, H. Dillon, Q. Xing, A. Palasyuk, M. R. McCartney, D. J. Smith, S. Constantinides, R. W. McCallum, I. E. Anderson, V. Antropov, and M. J. Kramer, “Architecture and magnetism of alnico,” Acta Mater. 74, 224–233 (2014). ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2014.04.044

  22. P. A. Kuznetsov, I. V. Shakirov, A. S. Zukov, V. V. Bobyr’, and M. V. Starytsin, “Effect of particle size distribution on the structure and mechanical properties in the process of laser powder bed fusion,” J. Phys: Conf. Ser. 1758, 012021 (2021).

    CAS  Google Scholar 

  23. V. Bobyr, A. Zhukov, I. Shakirov, and P. Kuznetsov, “Selection of the selective laser melting modes—As the method of achieving an item’s complex shape with the specified physical and mechanical properties,” Mater. Today: Proc. 19, 2129–2133 (2019).

    CAS  Google Scholar 

  24. P. Kuznetsov, I. Shakirov, A. Mozhayko, A. Zhukov, and V. Bobyr, “Comparison of sequential and circular scanning thermal fields and their influence on microstructure of Alnico alloy produced by laser powder bed fusion,” J. Phys.: Conf. Ser. 1967, 012064 (2021).

    CAS  Google Scholar 

Download references

Funding

The experimental studies were performed using equipment of the Center of Collective Access “Composition, Structure, and Properties of Structural and Functional Materials” at the Scientific Research Center Kurchatov Institute, Gorynin Central Research Institute of Structural Materials Prometei and were supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 13.CKP.21.0014, unique identifier RF-2296.61321X0014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Shakirov or A. S. Zhukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakirov, I.V., Zhukov, A.S., Perevislov, S.N. et al. The Effect of Selective Laser Melting Conditions on the Structure of an Alnico Alloy. Phys. Metals Metallogr. 123, 227–237 (2022). https://doi.org/10.1134/S0031918X22030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22030103

Keywords:

Navigation