Skip to main content
Log in

The Interplay of the Charge and Vortex Subsystems in Anisotropic Electron-Doped Superconductor Nd2 – xCexCuO4

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This paper presents the results of studies of the temperature and field dependences of the resistivity tensor of the electron-doped superconductor Nd2 – xCexCuO4 (0.12 ≤ x ≤ 0.20) in the CuO2 conducting planes and in the direction perpendicular to the CuO2 planes. These results are successfully interpreted within the concept of quasi-two-dimensionality of the systems with high metallic conductivity in the CuO2 conducting planes (dρab/dT > 0) and nonmetallic temperature dependence of conductivity in the direction of the c‑axis (dρc/dT < 0) due to incoherent tunneling and thermal activation through barriers between the CuO2 conducting layers. The specificities of the behavior of the magnetoresistivity ρxx(B) and the Hall resistivity ρxy(B) in the mixed (resistive) state are associated with the dynamics of the transverse motion of Abrikosov and Josephson vortices in the flux flow regime in crossed electric and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. K. A. Muller and J. G. Bednorz, “The discovery of a class of high-temperature superconductors,” Science 237, 1133–1139 (1987).

    Article  CAS  Google Scholar 

  2. E. H. Da Silva Neto, E. H. Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli, “Charge ordering in the electron-doped superconductor Nd2 – xCexCuO4,” Science 347, 282–285 (2015.

    Article  CAS  Google Scholar 

  3. P. Fournier, “T' and infinite-layer electron-doped cuprates,” Phys. C Supercond. Appl. 514, 314–338 (2015).

    CAS  Google Scholar 

  4. A. S. Klepikova, D. S. Petukhov, O. E. Petukhova, T. B. Charikova, N. G. Shelushinina, and A. A. Ivanov, “Incoherent interlayer transport in single-crystal films of Nd2 – xCexCuO4 /SrTiO3,” J. Phys. Conf. Ser. 993, 012002 (2018).

    Article  Google Scholar 

  5. A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the Hall effect in a quasi-two-dimensional electron-doped Nd2 – xCexCuO4 + δ,” Supercond. Phys. Solid State 60, 2162–2165 (2018).

    Article  CAS  Google Scholar 

  6. A. Guarino, L. Parlato, C. Bonavolonta, M. Valentino, C. Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, and A. Nigro, “Transport and optical properties of epitaxial Nd1.83Ce0.17CuO4 – δ thin films,” J. Phys. Conf. Ser. 507, 012018 (2014).

    Article  CAS  Google Scholar 

  7. A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, and A. Nigro, “Nd2 – xCexCuO4 ± δ ultrathin films crystalline properties,” IEEE Trans. Appl. Supercond. 28, 1–4 (2018).

    Article  Google Scholar 

  8. A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, and A. Nigro, “Electrical transport properties of sputtered Nd2 – xCexCuO4 ± δ thin films,” Phys. B Condens. Matter 536, 742–746 (2018).

    CAS  Google Scholar 

  9. A. Galluzzi, A. Nigro, R. Fittipaldi, A. Guarino, S. Pace, and M. Polichetti, “DC magnetic characterization and pinning analysis on Nd1.85Ce0.15CuO4 cuprate superconductor,” J. Magn. Magn. Mater. 475, 125–129 (2019).

    Article  CAS  Google Scholar 

  10. A. S. Klepikova, T. B. Charikova, M. R. Popov, A. B. Rinkevich, D. V. Perov, and E. A. Kuznetsov, “Anisotropy of magnetic properties and the permittivity of Nd1.9Ce0.1CuO4 + δ single crystal,” Phys. Met. Metallogr. 122, 520–526 (2021).

    Article  Google Scholar 

  11. H. Takagi, S. Uchida, and Y. Tokura, “Superconductivity produced by electron doping in CuO2-layered compounds,” Phys. Rev. Lett. 62, 1197–1200 (1989).

    Article  CAS  Google Scholar 

  12. E. Wang, J.-M. Tarascon, L. H. Greene, G. W. Hull, and W. R. McKinnon, “Cationic substitution and role of oxygen in the n-type superconducting T′ system Nd2 – yCeyCuOz,” Phys. Rev. B 41, 6582–6590 (1990).

    Article  CAS  Google Scholar 

  13. N. A. Fortune, K. Murata, M. Ishibashi, Y. Yokoyama, and Y. Nishihara, “Systematic variation of transport and thermodynamic properties with degree of reduction in Nd1.85Ce0.15CuO4 – δ,” Phys. Rev. B 43, 12930–12934 (1991).

    Article  CAS  Google Scholar 

  14. A. J. Schultz, J. D. Jorgensen, J. L. Peng, and R. L. Greene, “Single-crystal neutron-diffraction structures of reduced and oxygenated Nd2 – xCexCuOy,” Phys. Rev. B 53, 5157–5159 (1996).

    Article  CAS  Google Scholar 

  15. T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, A. V. Korolev, V. N. Neverov, and A. A. Ivanov, “Doping effect on the anomalous behavior of the Hall effect in electron-doped superconductor Nd2 – xCexCuO4 + δ,” Phys. C Supercond. 483, 113–118 (2012).

    Article  CAS  Google Scholar 

  16. H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, “Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd2 – xCexCuO4,” Phys. Rev. B 75, 224514 (2007).

    Article  Google Scholar 

  17. J. He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto, K. -J. Xu, Y. Wang, E. W. Huang, T. Jia, S. Chen, B. Moritz, D. Lu, Y. S. Lee, T. P. Devereaux, and Z. Shen, “Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order,” Proc. Natl. Acad. Sci. U. S. A. 116, 3449–3453 (2019).

    Article  CAS  Google Scholar 

  18. M. Lambacher, “Crystal growth and normal state transport of electron doped high temperature superconductors,” Dissertation (2008).

  19. A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, “Smooth homogeneous HTSC thin films produced by laser deposition with flux separation,” Phys. C Supercond. 180, 69–72 (1991).

    Article  CAS  Google Scholar 

  20. Yu. M. Tsipenyuk, Physical Foundations of Superconductivity: Tutorial (Moscow, MPTI, 2003) [in Russian].

    Google Scholar 

  21. A. S. Klepikova, M. R. Popov, A. A. Ivanov, M. V. Medvedev, and T. B. Charikova, “Anisotropy of the critical current density in a layered electron-doped superconductor Nd2 – xCexCuO4 + δ,” Low Temp. Phys. 45, 212 (2019).

    Article  CAS  Google Scholar 

  22. P. W. Anderson and Z. Zou, ““Normal” tunneling and “normal” transport: Diagnostics for the resonating-valence-bond state,” Phys. Rev. Lett. 60, 132–135 (1988).

    Article  CAS  Google Scholar 

  23. G. Kotliar, E. Abrahams, A. E. Ruckenstein, C. M. Varma, P. B. Littlewood, and S. Schmitt-Rink, “Long-wavelength behavior, impurity scattering and magnetic excitations in a marginal fermi liquid,” Europhys. Lett. 15, 655–660 (1991).

    Article  CAS  Google Scholar 

  24. T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, “Normal-state conductivity between CuO2 planes in copper oxide superconductors,” Nature 350, 596–598 (1991).

    Article  CAS  Google Scholar 

  25. T. B. Charikova, A. I. Ponomarev, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, and A. V. Tkach, “Quasi-two-dimensional transport properties of the layered superconductor Nd2 – xCexCuO4 + δ,” J. Exp. Theor. Phys. 105, 626–635 (2007).

    Article  CAS  Google Scholar 

  26. Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang, “Positive Hall coefficient observed in single-crystal Nd2 – xCexCuO4 – δ at low temperatures,” Phys. Rev. B 4, 3020–3025 (1991).

    Article  Google Scholar 

  27. T. Charikova, A. Ignatenkov, A. Ponomarev, A. Ivanov, T. Klimczuk, and W. Sadowski, “In-plane and out-of-plane temperature dependencies of the resistivity in single crystals and films of Nd2CuO4,” Phys. C Supercond. 388389, 323–324 (2003).

    Article  Google Scholar 

  28. T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, V. N. Neverov, and A. A. Ivanov, “Upper critical field in electron-doped cuprate superconductor Nd2 – xCexCuO4 + δ: Two-gap model,” Phys. C Supercond. 488, 25–29 (2013).

    Article  CAS  Google Scholar 

  29. A. I. Ponomarev, T. B. Charikova, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, A. V. Tkach, and A. A. Ivanov, “Anisotropy of transport properties of layered superconductors Nd2 – xCexCuO4 + δ and Ca2 ‒ xSrxRuO4,” Phys. Met. Metallogr. 104, 67–80 (2007).

    Article  Google Scholar 

  30. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, Orlando, 1976).

    Google Scholar 

  31. J. M. Ziman, Principles of the Theory of Solids (Cambridge, 1989).

    Google Scholar 

  32. H. Kontani, K. Kanki, and K. Ueda, “Hall effect and resistivity in high-Tc superconductors: The conserving approximation,” Phys. Rev. B 59, 14723–14739 (1999).

    Article  CAS  Google Scholar 

  33. T. Dahm and L. Tewordt, “Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors,” Phys. Rev. B 52, 1297–1308 (1995).

    Article  CAS  Google Scholar 

  34. P. Seng, J. Diehl, S. Klimm, S. Horn, R. Tidecks, K. Samwer, H. Hänsel, and R. Gross, “Hall effect and magnetoresistance in Nd1.85Ce0.15CuO4 – δ films,” Phys. Rev. B 52, 3071–3074 (1995).

    Article  CAS  Google Scholar 

  35. M. Kaveh and N. Wiser, “Electron-electron scattering in conducting materials,” Adv. Phys. 33, 257–372 (1984).

    Article  CAS  Google Scholar 

  36. C. C. Tsuei, A. Gupta, and G. Koren, “Quadratic temperature dependence of the in-plane resistivity in superconducting Nd1.85CuO4 – δ Evidence for Fermi-liquid normal state,” Phys. C Supercond. 161, 415–422 (1989).

    Article  CAS  Google Scholar 

  37. A. Cassam-Chenai and D. Mailly, “Transport in quasi-two-dimensional systems under a weak magnetic field,” Phys. Rev. B 52, 1984–1995 (1995).

    Article  CAS  Google Scholar 

  38. R. H. McKenzie and P. Moses, “Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals,” Phys. Rev. Lett. 81, 4492–4495 (1998).

    Article  CAS  Google Scholar 

  39. N. Kumar and A. M. Jayannavar, “Temperature dependence of the c-axis resistivity of high-Tc layered oxides,” Phys. Rev. B 45, 5001–5004 (1992).

    Article  CAS  Google Scholar 

  40. M. Giura, R. Fastampa, S. Sarti, and E. Silva, “Normal-state c-axis transport in Bi2Sr2CaCu2O8 + δ : Interlayer tunneling and thermally activated dissipation,” Phys. Rev. B 68, 134505 (2003).

    Article  Google Scholar 

  41. V. V. Kapaev and Y. V. Kopaev, “High-temperature superconductors as heterostructures,” J. Exp. Theor. Phys. Lett. 68, 223–229 (1998).

    Article  Google Scholar 

  42. P. Landsberg, Problems on Thermodynamics and Statistical Physics (Moscow, 1974) [in Russian].

    Google Scholar 

  43. M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Tunnel and thermal c -axis transport in BSCCO in the normal and pseudogap states,” Supercond. Sci. Technol. 20, 54–59 (2007).

    Article  Google Scholar 

  44. M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Interlayer tunnel and thermal activation in c‑axis transport in Bi2Sr2CaCu2O8 + δ,” Phys. C Supercond. 460462, 831–832 (2007).

    Article  Google Scholar 

  45. M. Giura, R. Fastampa, S. Sarti, and E. Silva, “c-Axis transport and phenomenology of the pseudogap state in Bi2Sr2CaCu2O8 + δ,” Phys. Rev. B 70, 214530 (2004).

    Article  Google Scholar 

  46. M. R. Popov, A. S. Klepikova, T. B. Charikova, E. F. Talantsev, N. G. Shelushinina, and A. A. Ivanov, “Normal state interlayer conductivity in epitaxial Nd2 ‒ xCexCuO4 films deposited on SrTiO3 (110) single crystal substrates,” Mater. Res. Express 6, 096005 (2019).

    Article  CAS  Google Scholar 

  47. A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, M. R. Popov, and A. A. Ivanov, “Anisotropic temperature dependence of normal state resistivity in underdoped region of a layered electron-doped superconductor Nd2 – xCexCuO4,” Low Temp. Phys. 45, 217–223 (2019).

    Article  CAS  Google Scholar 

  48. F. M. Izrailev, S. Ruffo, and L. Tessieri, “Classical representation of the one-dimensional Anderson model,” J. Phys. A. Math. Gen. 31, 5263–5270 (1998).

    Article  Google Scholar 

  49. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Book  Google Scholar 

  50. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59, 1–85 (1987).

    Article  CAS  Google Scholar 

  51. A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the hall effect in a quasi-two-dimensional electron-doped Nd2 – xCexCuO4 + δ superconductor,” Phys. Met. Metallogr. 60, 2162–2165 (2018).

    CAS  Google Scholar 

  52. M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Interlayer Hall Effect in n-type doped high temperature superconductor Nd2 – xCexCuO4 + δ,” Phys. C Supercond. Appl. 566, 1353515 (2019).

    CAS  Google Scholar 

  53. T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, G. I. Kharus, O. E. Petukhova, and A. A. Ivanov, “Correlation between the hall resistance and magnetoresistance in the mixed state of an Nd2 – xCexCuO4 + δ electronic superconductor,” Phys. Met. Metallogr. 118, 1184–1191 (2017).

    Article  CAS  Google Scholar 

  54. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  CAS  Google Scholar 

  55. S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, “Vortex-pair excitation near the superconducting transition of Bi2Sr2CaCu2O8 crystals,” Phys. Rev. Lett. 62, 677–680 (1989).

    Article  CAS  Google Scholar 

  56. B. I. Ivlev, Y. N. Ovchinnikov, and R. S. Thompson, “Quantum flux creep in layered high- Tc superconductors,” Phys. Rev. B 44, 7023–7027 (1991).

    Article  CAS  Google Scholar 

  57. N. B. Kopnin, “Hall effect in moderately clean superconductors and the transverse force on a moving vortex,” Phys. Rev. B 54, 9475–9483 (1996).

    Article  CAS  Google Scholar 

  58. E. H. Brandt, “The flux-line lattice in superconductors,” Rep. Prog. Phys. 58, 1465–1594 (1995).

    Article  CAS  Google Scholar 

  59. N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford, 2009).

    Google Scholar 

  60. M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004), 2nd ed.

    Google Scholar 

  61. W. K. Kwok, U. Welp, V. M. Vinokur, S. Fleshler, J. Downey, and G. W. Crabtree, “Direct observation of intrinsic pinning by layered structure in single-crystal YBa2Cu3O7 – δ,” Phys. Rev. Lett. 67, 390–393 (1991).

    Article  CAS  Google Scholar 

  62. R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, “Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals,” Phys. Rev. Lett. 68, 2394–2397 (1992).

    Article  CAS  Google Scholar 

  63. M. Rapp, A. Murk, R. Semerad, and W. Prusseit, “c‑Axis Conductivity and Intrinsic Josephson Effects in YBa2Cu3O7 – δ,” Phys. Rev. Lett. 77, 928–931 (1996).

    Article  CAS  Google Scholar 

  64. A. E. Koshelev, “Role of in-plane dissipation in dynamics of a Josephson vortex lattice in high-temperature superconductors,” Phys. Rev. B 62, 3616–3619 (2000).

    Article  Google Scholar 

  65. B. I. Ivlev and N. B. Kopnin, “Flux creep and flux pinning in layered high-temperature superconductors,” Phys. Rev. Lett. 64, 1828–1830 (1990).

    Article  CAS  Google Scholar 

  66. G. Blatter, B. I. Ivlev, and J. Rhyner, “Kosterlitz–Thouless transition in the smectic vortex state of a layered superconductor,” Phys. Rev. Lett. 66, 2392–2395 (1991).

    Article  CAS  Google Scholar 

  67. P. Lebwohl and M. J. Stephen, “Properties of vortex lines in superconducting barriers,” Phys. Rev. 163, 376–379 (1967).

    Article  CAS  Google Scholar 

  68. L. N. Bulaevskii, M. Maley, H. Safar, and D. Domínguez, “Angular dependence of c-axis plasma frequency and critical current in Josephson-coupled superconductors at high fields,” Phys. Rev. B 53, 6634–6637 (1996).

    Article  CAS  Google Scholar 

  69. A. Pruymboom, P. H. Kes, E. van der Drift, and S. Radelaar, “Flux-line shear through narrow constraints in superconducting films,” Phys. Rev. Lett. 60, 1430–1433 (1988).

    Article  CAS  Google Scholar 

  70. S. Anders, A. W. Smith, R. Besseling, P. H. Kes, and H. M. Jaeger, “Static and dynamic shear response in ultrathin layers of vortex matter,” Phys. Rev. B 62, 15195–15199 (2000).

    Article  CAS  Google Scholar 

  71. P. H. Kes, J. Aarts, V. M. Vinokur, and C. J. van der Beek, “Dissipation in highly anisotropic superconductors,” Phys. Rev. Lett. 64, 1063–1066 (1990).

    Article  CAS  Google Scholar 

  72. R. Besseling, R. Niggebrugge, and P. H. Kes, “Transport properties of vortices in easy flow channels: A Frenkel–Kontorova study,” Phys. Rev. Lett. 82, 3144–3147 (1999).

    Article  CAS  Google Scholar 

  73. J. M. Harris, N. P. Ong, and Y. F. Yan, “Hall effect of vortices parallel to CuO2 layers and the origin of the negative Hall anomaly in YBa2Cu3O7 – δ,” Phys. Rev. Lett. 71, 1455–1458 (1993).

    Article  CAS  Google Scholar 

  74. J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. 140, A1197–A1207 (1965).

    Article  Google Scholar 

  75. N. G. Shelushinina, G. I. Harus, T. B. Charikova, D. S. Petukhov, O. E. Petukhova, and A. A. Ivanov, “The mixed-state Hall conductivity of single-crystal films Nd2 – xCexCuO4 + δ (x = 0.14),” Low Temp. Phys. 43, 475–477 (2017).

    Article  CAS  Google Scholar 

  76. D. I. Khomskii and A. Freimuth, “Charged vortices in high temperature superconductors,” Phys. Rev. Lett. 75, 1384–1386 (1995).

    Article  CAS  Google Scholar 

  77. M. V. Feigel’man, V. B. Geshkenbein, A. I. Vinokur, and M. V. Larkin, “Sign change of the flux flow hall effect in HTSC,” JETP Lett. 62, 834–840 (1995).

    Google Scholar 

  78. A. van Otterlo, M. Feigel’man, V. Geshkenbein, and G. Blatter, “Vortex dynamics and the Hall anomaly: A microscopic analysis,” Phys. Rev. Lett. 75, 3736–3739 (1995).

    Article  CAS  Google Scholar 

  79. X. Xing, Z. Li, X. Yi, J. Feng, C. Xu, N. Zhou, Y. Meng, Y. Zhang, Y. Pan, L. Qin, W. Zhou, H. Zhao, and Z. Shi, “Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors,” Sci. China Phys., Mech. Astron. 61, 127406 (2018).

    Article  CAS  Google Scholar 

  80. F. W. Carter, T. Khaire, C. Chang, and V. Novosad, “Low-loss single-photon NbN microwave resonators on Si,” Appl. Phys. Lett. 115, 092602 (2019).

    Article  Google Scholar 

  81. N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, “The flux-flow Hall effect in type II superconductors. An explanation of the sign reversal,” J. Low Temp. Phys. 90, 1–13 (1993).

    Article  CAS  Google Scholar 

  82. A. G. Aronov, S. Hikami, and A. I. Larkin, “Gauge invariance and transport properties in superconductors above Tc,” Phys. Rev. B 51, 3880–3885 (1995).

    Article  CAS  Google Scholar 

  83. V. M. Genkin and A. S. Melnikov, “Motion of Abrikosov vortices in anisotropic superconductors,” J. Exp. Theor. Phys. 95, 2170–2174 (1989).

    Google Scholar 

  84. L. P. Gor’kov and N. B. Kopnin, “Vortex motion and resistivity of type-ll superconductors in a magnetic field,” Sov. Phys. Usp. 18, 496–513 (1975).

    Article  Google Scholar 

  85. W. Kohno, H. Ueki, and T. Kita, “Hall Effect in the Abrikosov Lattice of Type-II Superconductors,” J. Phys. Soc. Jpn. 85, 083705 (2016).

    Article  Google Scholar 

  86. K. C. Woo, K. E. Gray, R. T. Kampwirth, J. H. Kang, S. J. Stein, R. East, and D. M. McKay, “Lorentz-force independence of resistance tails for high-temperature superconductors in magnetic fields near Tc,” Phys. Rev. Lett. 63, 1877–1879 (1989).

    Article  CAS  Google Scholar 

  87. I. G. Gorlova and Y. I. Latishev, “The equivalence of the influence of a weak magnetic field and current on the resistance of single crystals Bi2Sr2CaCu2Ox is lower than the Berezinskii–Kosterlitz–Thouless transition temperature,” JETP Lett. 51, 224–227 (1990).

    Google Scholar 

  88. G. Venditti, J. Biscaras, S. Hurand, N. Bergeal, J. Lesueur, A. Dogra, R. C. Budhani, M. Mondal, J. Jesudasan, P. Raychaudhuri, S. Caprara, and L. Benfatto, “Nonlinear I–V characteristics of two-dimensional superconductors: Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity,” Phys. Rev. B 100, 064506 (2019).

    Article  CAS  Google Scholar 

  89. O. E. Petukhova, M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Lateral vortex motion in highly layered electron-doped superconductor Nd2 – xCexCuO4,” Phys. C Supercond. Appl. 578, 1353738 (2020).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Ivanov for creative production of samples, S.M. Podgornykh for the Hall resistivity measurements on the PPMS 9 device, carried out at the Center for Collective Use of the Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, and to E.F. Talantsev for fruitful cooperation.

Funding

This work was carried out as part of the state assignment on the topics “Function” no. AAAA-A19-119012990095-0 and “Electron” no. AAAA-A18-118020190098-5 and was supported by the Russian Foundation for Basic Research and the Sverdlovsk region as part of the scientific project no. 20-42-660004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Popov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klepikova, A.S., Petukhova, O.E., Popov, M.R. et al. The Interplay of the Charge and Vortex Subsystems in Anisotropic Electron-Doped Superconductor Nd2 – xCexCuO4. Phys. Metals Metallogr. 123, 114–137 (2022). https://doi.org/10.1134/S0031918X22020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22020053

Keywords:

Navigation