Skip to main content
Log in

Effect of Crystallization Conditions on the Microstructure, Crystal Structure, and Mechanical Properties of a Fe–Mn–C Alloy in Microvolumes

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of the comparative study of the microstructure, crystal structure, and mechanical properties in microvolumes of the Fe–25 wt % Mn–2 wt % С alloy crystallized from melt in different structural states—homogeneous and heterogeneous—were presented. The study was performed by means of scanning electron microscopy Energy Dispersive X-Ray Spectroscopy (EDX), electron backscatter diffraction (EBSD), and nanoindentation. The destruction of microheterogeneity in the Fe–Mn–C melts was established to lead to an increase in the dendrite parameter, the size of crystallites, and the fraction of low-angle boundaries under cooling and further crystallization. The surface of austenite dendrites was revealed to contain manganese-rich liquation layers, which had a thickness 〈L〉 = 60 µm and a manganese content of 35–40% and led to deformation nonuniformity of an ingot. The adhesion strength of the liquation layer to the body of an austenite dendrite was estimated as Kint = 9.6–13.1 MPa m0.5 and could not be a reason for the destruction of an ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. Popova, T. Dement, E. Nikonenko, I. Kurzina, and E. Kozlov, “Structure and phase composition of manganese steels modified by alloying elements,” AIP Conf. Proc. 1800, No. 1, 030001 (2017).

    Article  Google Scholar 

  2. O. Grässel and G. Frommeyer, “Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels,” Mater. Sci. Technol. 14, No. 12, 1213–1217 (2018).

    Article  Google Scholar 

  3. G. Frommeyer and O. Grässel, “High strength TRIP/TWIP and superplastic steels: development, properties, application: 10,” Rev. Met. Paris 95, No. 10, 1299–1310 (1998).

    Article  CAS  Google Scholar 

  4. G. Frommeyer, U. Brüx, and P. Neumann, “Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes,” ISIJ Int. 43, No. 3, 438–446 (2003).

    Article  CAS  Google Scholar 

  5. P. S. Popel’, “Metastable microheterogeneity of melts in systems with eutectic and monotectics and its effect on the structure of the alloy after solidification,” Rasplavy, No. 1, 22–48 (2005).

    Google Scholar 

  6. M. Calvo-Dahlborg, P. S. Popel, M. J. Kramer, M. Besser, J. R. Morris, and U. Dahlborg, “Superheat-dependent microstructure of molten Al–Si alloys of different compositions studied by small angle neutron scattering,” J. Alloys Compd. 550, 9–22 (2013).

    Article  CAS  Google Scholar 

  7. Y.-X. He, J.-S. Li, J. Wang, and E. Beaugnon, “Liquid−liquid structure transition in metallic melt and its impact on solidification: A review,” Trans. Nonferrous Met. Soc. China 30, 2293−2310 (2020).

    Article  CAS  Google Scholar 

  8. R. Kurita and H. Tanaka, “Drastic enhancement of crystal nucleation in a molecular liquid by its liquid–liquid transition,” App. Phys. Sci. 116, No. 50, 24949–24955 (2020).

    Google Scholar 

  9. I. G. Farbenindustrie, U.S. Patent No. GB359425 (1931).

  10. N. N. Stepanova, D. P. Rodionov, Yu. E. Turkhan, V. A. Sazonova, and E. N. Khlystov, “Phase stability of nickel-base superalloys solidified after a high-temperature treatment of the melt,” Phys. Met. Metallogr. 95, No. 6, 602–609 (2003).

    Google Scholar 

  11. M. Yang, J. Pan, X. Liu, M. Dong, S. Xu, and Y. Dong, “Effects of melt overheating on undercooling degree, glass forming ability and crystallization behavior of Nd9Fe70Ti4C2B15 permanent magnetic alloy,” J. Chin. Rare Earth Soc. 34, No. 3, 273–281 (2016).

    Google Scholar 

  12. F. S. Yin, X. F. Sun, J. G. Li, H. R. Guan, and Z. Q. Hu, “Effects of melt treatment on the cast structure of M963 superalloy,” Scr. Mater. 48, No. 4, 425–429 (2003).

    Article  CAS  Google Scholar 

  13. R. J. Mostert and G. T. Van Rooyen, “Quantitative assessment of the harden ability increase resulting from a super harden ability treatment,” Metall. Trans. A 15, No. 12, 2185–2191 (1984).

    Article  Google Scholar 

  14. C. Wang, J. Zhang, L. Liu, and H. Fu, “Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy,” J. Mater. Sci. Technol. 27, No. 7, 668–672 (2011).

    Article  Google Scholar 

  15. L. Wang, L. Bo, M. Zuo, and D. Zhao, “Effect of melt superheating treatment on solidification behavior of uniform Al10Bi54Sn36 monotectic alloy,” J. Mol. Liq. 272, 885–891 (2018).

    Article  CAS  Google Scholar 

  16. P. Jia, Z. Gao, X. Hu, Y. Liu, J. Zhang, Z. Yang, X. Teng, D. Zhao, Y. Wang, S. Zhang, and D. Geng, “Correlation of composition, cooling rate and superheating temperature with solidification behaviors and microtructures of Al–Bi–Sn ribbons,” Mater. Res. Express 6, No. 6, 066539 (2019).

    Article  CAS  Google Scholar 

  17. H. Su, H. Wang, J. Zhang, M. Guo, L. Liu, and H. Fu, “Influence of melt superheating treatment on solidification characteristics and rupture life of a third-generation Ni-based single-crystal superalloy,” Metall. Mater. Trans. B 49, No. 4, 1537–1546 (2018).

    Article  CAS  Google Scholar 

  18. O. A. Chikova, N. I. Sinitsin, and V. V.V’yukhin, “Viscosity of Fe–Mn–C melts,” Russ. J. Phys. Chem. A 95, No. 2, 244–249 (2021). https://doi.org/10.1134/S0036024421020084

    Article  CAS  Google Scholar 

  19. N. I. Sinitsin, O. A. Chikova, and V. V.V’yukhin, “Resistivity of Fe–Mn–C melts”, Inorg. Mater. 57, No. 1, 86–93 (2021). https://doi.org/10.1134/S002016852101012X

    Article  CAS  Google Scholar 

  20. O. A. Chikova, N. I. Sinitsin, and V. V.V’yukhin, “Parameters of the microheterogeneous structure of liquid 110G13l steel,” Russ. J. Phys. Chem. A 93, No. 8, 1435–1442 (2019). https://doi.org/10.1134/S0036024419080065

    Article  CAS  Google Scholar 

  21. O. A. Chikova, N. I. Sinitsin, V. V.V’yukhin, and D. Chezganov, “Microheterogeneity and crystallization conditions of Fe-Mn melts,” J. Cryst. Growth. 527, 125239 (2019). https://doi.org/10.1016/j.jcrysgro.2019.125239

    Article  CAS  Google Scholar 

  22. N. I. Sinitsin, O. A. Chikova, and D. Chezganov, “Effect of destruction of microheterogeneity on microstructure and crystal structure of 110G13l steel ingots (Hadfield steel),” Chern. Met., No. 1, 36–42 (2020).

  23. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19, No. 1, 3–20 (2004).

    Article  CAS  Google Scholar 

  24. C. Zhang, H. Zhou, and L. Liu, “Laminar Fe-based amorphous composite coatings with enhanced processand microstructure evolution,” Solid State Phenom. 176, 29–34 (2011).

    Article  Google Scholar 

  25. C. Zhang, H. Zhou, and L. Liu, “Laminar Fe-based amorphous composite coatings with enhanced bonding strength and impact resistance,” Acta Mater. 72,239–251 (2014).

    Article  CAS  Google Scholar 

  26. T. Watanabe, “An approach to grain boundary design for strong and ductile polycrystals,” Res. Mech. 11, No. 1, 47–84 (1984).

    CAS  Google Scholar 

  27. T. Watanabe, “Grain boundary design and control for high temperature materials,” Mater. Sci. Eng., A 166, No. 1–2, 11–28 (1993).

    Article  Google Scholar 

  28. P. Lin, G. Palumbo, U. Erb, and K. T. Aust, “Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600,” Scr. Metall. Mater. 33, No. 9, 1387–1392 (1995).

    Article  CAS  Google Scholar 

  29. G. Palumbo, P. J. King, K. T. Aust, U. Erb, and P. C. Lichtenberger, “Grain boundary design and control for intergranular stress-corrosion resistance,” Scr. Metall. Mater. 25, No. 8, 1775–1780 (1991).

    Article  CAS  Google Scholar 

  30. B. W. Bennett and H. W. Pickering, “Effect of grain boundary structure on sensitization and corrosion of stainless steel,” Metall. Trans. A 18, No. 6, 1117–1124 (1991).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Ural Center for Shared Use “Modern nanotechnology” UrFU was used.

Funding

The reported study was funded by RFBR, project number 19-33-90198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sinitsin.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikova, O.A., Sinitsin, N.I. & Chezganov, D.S. Effect of Crystallization Conditions on the Microstructure, Crystal Structure, and Mechanical Properties of a Fe–Mn–C Alloy in Microvolumes. Phys. Metals Metallogr. 123, 85–91 (2022). https://doi.org/10.1134/S0031918X22010021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22010021

Keywords:

Navigation