Skip to main content
Log in

Electron Microscopy Study of Metastable Shape Memory Cu–Al–Ni Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Data on premartensitic states and martensitic transformations in the shape memory alloys Сu–14 wt % Al–3 wt % Ni and 13.5 wt % Al–3.5 wt % Ni were obtained using electron microscopy and X‑ray analysis together with measurements of electrical resistivity and magnetic susceptibility. The fine structure and diffuse electron scattering have been studied in detail, including in situ heating and cooling experiments. On the basis of the observed diffuse scattering and internal defects of the martensitic substructure, a crystallographic model of martensitic rearrangement β1\(\beta _{1}^{'}\) and β1\(\gamma _{1}^{'}\) is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Shape Memory Effects in Alloys, Ed. by J. Perkins (Plenum, London, 1975).

    Google Scholar 

  2. Kh. Varlimont and L. Dilei, Martensitic Transformation in Alloys Based on Copper, Silver, and Gold (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  3. K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tabaki, T. Khomma, and S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  4. Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman (Butterworth-Heineman, London, 1990).

    Google Scholar 

  5. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  6. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransitional Phenomena and Martensitic Transformations (UrBr RAS, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  7. E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008).

    Article  Google Scholar 

  8. A. Planes, L. Mañosa, and M. Acet, “Magnetocaloric effect and its relation to shapememory properties in ferromagnetic Heusler alloys,” J. Phys.: Condens. Matter 21, 233201 (2009).

    Google Scholar 

  9. J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012).

    Article  Google Scholar 

  10. L. Mañosa, S. Jarque-Farnos, E. Vives, and A. Planes, “Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys,” Appl. Phys. Lett. 103, 211904 (2013).

    Article  Google Scholar 

  11. R. Dasgupta, “A look into Cu-based shape memory alloys: Present Scenario and future prospects,” J. Mater. Res. 29, No. 16, 1681–1698 (2014).

    Article  CAS  Google Scholar 

  12. V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019).

    Article  CAS  Google Scholar 

  13. A. V. Luk’yanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, 374–382 (2018).

  14. A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belosludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, 1159–1165 (2019).

    Article  CAS  Google Scholar 

  15. A. E. Svirid, V. G. Pushin, N. N. Kuranova, E. S. Belosludtseva, A. V. Pushin, and A. V. Lukyanov, “The Effect of Plastification of Cu–14Al–4Ni Alloy with the Shape Memory Effect in High-Temperature Isothermal Precipitation,” Tech. Phys. Lett. 46 (2), 118–121 (2020).

  16. A. E. Svirid, A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, and A. N. Uksusnikov, “Application of Isothermal Upset for Megaplastic Deformation of Cu–Al–Ni β Alloys,” Tech. Phys. 65 (7), 1044–1050 (2020).

  17. P. Sedlak, H. Seiner, M. Landa, V. Novák, P. Šittner, and L. I. Manosa, “Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy,” Acta Mater. 53, 3643–3661 (2005).

    Article  CAS  Google Scholar 

  18. K. Otsuka, C. M. Wayman, and H. Kubo, “Diffuse Electron Scattering in β–phase alloys,” Metall. Trans. A 9, 1075–1085 (1978).

    Article  Google Scholar 

  19. A. M. Glezer and B. V. Molotilov, Ordering and Deformation of Iron Alloys (Metallurgiya, Moscow, 1984).

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

Authors are grateful to A.V. Korolev for carrying out magnetic measurements. The work was performed using equipment of Collaborative Access Center “Testing Center of Nanotechnology and Advanced Materials” IMP UB RAS.

Funding

The work is performed in the framework of state assignment of the Ministry of Education and Science of Russia (theme “Structure”, No. АААА-А18-118020190116-6) and in the collaborative laboratory of IMP UBRAS and UrFU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pushin.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushin, V.G., Kuranova, N.N., Makarov, V.V. et al. Electron Microscopy Study of Metastable Shape Memory Cu–Al–Ni Alloys. Phys. Metals Metallogr. 122, 1112–1120 (2021). https://doi.org/10.1134/S0031918X21110119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21110119

Keywords:

Navigation