Skip to main content
Log in

Effect of Ni and Al on the Decomposition Kinetics and Stability of Cu-Enriched Precipitates in Fe–Cu–Ni–Al Alloys: Results of MD + MC Simulation

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

To understand the effects of doping elements on the formation and structure of Сu-enriched precipitates, different stages of Fe–Cu–Ni–Al alloy decomposition are studied using the combined MC + MD approach, which includes the Monte Carlo (MC) and molecular dynamics (MD) simulations. It is shown that the surface of the precipitates enriches in the doping elements at early stages of the decomposition, which is significant for the structure stability against the bcc → 9R transition of the copper enriched precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Gornostyrev and M. I. Katsnelson, “Misfit stabilized embedded nanoparticles in metallic alloys,” Phys. Chem. Chem. Phys. 17, 27249–27257 (2015).

    Article  CAS  Google Scholar 

  2. Q. Jiang and C. C. Yang, “Size effect on the phase stability of nanostructures,” Curr. Nanosci. 4, 179–200 (2008).

    Article  CAS  Google Scholar 

  3. M. Bonvalet, T. Philippe, X. Sauvage, and D. Blavette, “The influence of size on the composition of nano-precipitates in coherent precipitation,” Philos. Mag. 94, 2956 (2014).

    Article  CAS  Google Scholar 

  4. S. B. Kadambi and S. Patala, “Thermodynamic stabilization of precipitates through interface segregation: Chemical effects,” Phys. Rev. Mater. 1, 043604 (2017).

    Article  Google Scholar 

  5. A. I. Gorbatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Ab initio modeling of decomposition in iron based alloys, Phys. Met. Metallogr. 117, 1293–1327 (2016).

    Article  CAS  Google Scholar 

  6. S. Vaynman, R. S. Guico, M. E. Fine, and S. J. Maganello, “Estimation of atmospheric corrosion of high-strength, low-alloy steels,” Metall. Trans. A 28, 1274–1276 (1997).

    Article  Google Scholar 

  7. D. Isheim, R. P. Kolli, M. E. Fine, and D. N. Seidman, “An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe–Cu based high-strength low-carbon steels,” Scr. Mater. 55, 35–40 (2006).

    Article  CAS  Google Scholar 

  8. M. E. Fine, J. Z. Liu, and M. D. Asta, “An unsolved mystery: The composition of bcc Cu alloy precipitates in bcc Fe and steels,” Mater. Sci. Eng., A 463, 271–274 (2007).

    Article  Google Scholar 

  9. O. I. Gorbatov, I. K. Razumov, Yu. N. Gornostyrev, V. I. Razumovskiy, P. A. Korzhavyi, and A. V. Ruban, “Role of magnetism in Cu precipitation in α-Fe,” Phys. Rev. B 88, 174113 (2013).

    Article  Google Scholar 

  10. O. I. Gorbatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Effect of Ni and Mn on the formation of Cu precipitates in α-Fe,” Scr. Mater. 102, 11–14 (2015).

    Article  CAS  Google Scholar 

  11. S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, and Z. Lu, “Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation,” Nature 544, 460–464 (2017).

    Article  CAS  Google Scholar 

  12. M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M. E. Fine, and Y.-W. Chung, “Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel,” Acta Mater. 73, 56–74 (2014).

    Article  CAS  Google Scholar 

  13. M. Kapoor, D. Isheim, S. Vaynman, M. E. Fine, and Y.-W. Chung, “Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl precipitation-strengthened ferritic steels,” Acta Mater. 104, 166–171 (2016).

    Article  CAS  Google Scholar 

  14. S. Höring, N. Wanderka, and J. Banhart, “The influence of Cu addition on precipitation in Fe–Cr–Ni–Al–(Cu) model alloys,” Ultramicroscopy 109, 574–579 (2009)

    Article  Google Scholar 

  15. B. Jiao, J. H. Luan, M. K. Miller, and C. T. Liu, “Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles,” Acta Mater. 97, 58–67 (2015).

    Article  CAS  Google Scholar 

  16. Z. B. Jiao, J. H. Luan, M. K. Miller, C. Y. Yu, and C. T. Liu, “Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths,” Sci. Rep. 6, 21364–21376 (2016).

    Article  CAS  Google Scholar 

  17. Z. B. Jiao, J. H. Luan, W. Guo, J. D. Poplawsky, and C. T. Liu, “Atom-probe study of Cu and NiAl nanoscale precipitation and interfacial segregation in a nanoparticle-strengthened steel,” Mater. Res. Lett. 5, 562–568 (2017).

    Article  CAS  Google Scholar 

  18. Z. B. Jiao, J. H. Luan, M. K. Miller, Y. W. Chung, and C. T. Liu, “Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era,” Mater. Today 20, 142–154 (2017).

    Article  CAS  Google Scholar 

  19. E. Vincent, C. S. Becquart, and C. Domain, “Solute interaction with point defects in α Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach,” J. Nucl. Mater. 351, 88–99 (2006).

    Article  CAS  Google Scholar 

  20. A. I. Gorbatov, S. V. Okatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Effect of magnetism on the solubility of 3d elements in BCC iron: results of first-principle investigations,” Phys. Met. Metallogr. 114, 642–653 (2013).

    Article  Google Scholar 

  21. I. N. Kar’kin, L. E. Kar’kina, P. A. Korzhavyi, and Yu. N. Gornostyrev, “Kinetics of early decomposition stages in diluted BCC Fe–Cu–Ni–Al alloy: MC+MD simulation,” Phys. Solid State 59, 601–608 (2017).

    Article  Google Scholar 

  22. http://lammps.sandia.gov/index.html.

  23. http://www.ctcms.nist.gov/potentials/.

  24. X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers,” Phys. Rev. B 69, 144113 (2004).

    Article  Google Scholar 

  25. O. I. Gorbatov, A. Hosseinzadeh Delandar, Yu. N. Gornostyrev, A. V. Ruban, and P. A. Korzhavyi, “First-principles study of interactions between substitutional solutes in bcc iron,” J. Nucl. Mater. 475, 140–148 (2016).

    Article  CAS  Google Scholar 

  26. “Applications of the Monte Carlo method,” in Statistical Physics, Ed. by K. Binder (Springer, Berlin, 1984). 311 p.

    Google Scholar 

  27. A. Deschamps, M. Militzer, and W. J. Poole, “Precipitation kinetics and strengthening of a Fe–0.8 wt % Cu alloy,” ISIJ Int. 41, 196–205 (2001).

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation (project no. 18-12-00366) and by the state assignment (L.E. Karkina) theme “Pressure” No. А18-118020190104-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Karkina.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkin, I.N., Karkina, L.E., Gornostyrev, Y.N. et al. Effect of Ni and Al on the Decomposition Kinetics and Stability of Cu-Enriched Precipitates in Fe–Cu–Ni–Al Alloys: Results of MD + MC Simulation. Phys. Metals Metallogr. 122, 498–503 (2021). https://doi.org/10.1134/S0031918X21050045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21050045

Keywords:

Navigation